DRINKING WATER

GettyImages-2176083692 hurricane Building Resilient Water Treatment: How Ozone Systems Help Utilities Prepare for Extreme Weather

Ozone systems build resilience into water treatment. They ensure utilities remain chemically self-sufficient, allow fast recovery from power outages, and handle rapid water quality shifts.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

  • LC-MS Analysis Of 33 PFAS Compounds In 5 Minutes
    11/4/2021

    In response to environmental testing demands for faster LC-MS analyses, the new Ascentis® Express PFAS HPLC and delay columns allow the highly efficient separation of 33 PFAS compounds in 5 minutes with reduced background contamination.

  • Removal Of Chloramines With Activated Carbon
    12/30/2013

    In order to reduce the formation of harmful disinfection byproducts in drinking water, alternative disinfectant use has become increasingly widespread. Monochloramine is a leading alternative disinfectant that offers advantages for municipal water. This tech brief details the removal of monochloramine using activated carbon.

  • Application Note: Ozone Measurement In Potable Water
    3/1/2010

    Ozone is a powerful oxidizing agent that can be used to destroy the organic compounds that affect the taste and odor of potable water. Environmental concerns have led to increased use of ozone because, unlike chlorine, it does not form hazardous by-products.

  • Fountain Testing Solutions
    10/29/2021

    Accurate fountain (dampening) solution concentration control is essential for consistent, high-quality results in lithography. Low concentration can cause drying on the non-image area of the plate resulting in tinting, scumming, blanket piling, etc. High concentrations, on the other hand, bring about over-emulsification of the ink. This results in weakening of color strength and changes in ink rheology (body and flow properties). Correct concentration will allow the non-image areas of the plate to be appropriately wetted.

  • Water Treatment In Boilers And Cooling Towers
    10/29/2021

     Most people recognize problems associated with corrosion. Effects from scale deposits, however, are equally important. For example, as little as 1/8" of scale can reduce the efficiency of a boiler by 18% or a cooling tower heat exchanger by 40%!

  • Irrigation Technology In Agriculture: How New Technologies Overcome Challenges
    1/29/2019

    As the world’s population continues to increase at a fast pace, more food and water will be needed to sustain humanity. In the past 50 years, we have tripled our need for water and food, and there are no signs of this trend slowing down. As a result of these conditions, smart, innovative agricultural practices are needed now more than ever. Technology can, and already does, aid agriculture in innumerable ways. One prominent part of agriculture that can use technological innovation to increase efficiency and effectiveness is irrigation.

  • Simplify And Optimize Your Process With Level And Pump Control
    3/1/2022

    Level controllers have evolved to meet today’s environmental challenges and industry demands. Learn how they support improved process management and, ultimately, a better bottom line.

  • Hydrogen Sulfide Removal From Water Using AquaSorb® CX-MCA
    2/19/2014

    The “rotten egg” odor in some water supplies is caused by sulfide in water. Sulfide can be treated using oxidation techniques, the goal being to convert the sulfide to high oxidation state species such as sulfate to eliminate the taste and odor concerns. Traditional oxidation techniques such as ozone and chlorine can be used, but can be expensive due to the equipment required to add and monitor the oxidant, and can lead to by-products such as trihalomethanes (THMs), which are regulated in drinking water supplies.

  • Scrubber Application
    1/27/2022

    This customer supplies district heating and electricity for the region of Sønderborg. For one of their waste applications a MAG meter failed within 6 months, and was successfully replaced with a Panametrics Aquatrans AT600.

  • Panametrics Technology Helps Track Potable Water Leaks
    4/22/2022

    Concerned about the volume of water leakages throughout their network, a Swedish water authority turned to Panametrics flowmeters to map their municipal water network -- enabling quick leak identification and fixes.

DRINKING WATER PRODUCTS

The TrojanUVFlex is designed with features to make installation and operation simpler, faster, and more cost-effective than ever before. Built on the proven TrojanUV Solo Lamp Technology platform, TrojanUVFlex allows for energy-efficient high-intensity delivery of UV light in an extremely compact footprint.

The EX-TEND® 200 joint is designed for pipelines that are subjected to expansion and contraction forces and is self restrained at full expansion.

CHEM-FEED Wall Mount Skid Systems were designed and engineered using solid modeling tools for superior piping installation and easy component maintenance. Every skid is completely assembled, tested, and shipped directly to you.

The modular design of the ProcessMaster FEP500 enhanced version offers the industry's widest range of liners electrodes and sizes to meet the needs of even the most demanding process applications in sectors as diverse as chemical, power, oil & gas, pulp & paper and metals & mining.

The tried-and-trusted SITRANS FST020 transmitter has been upgraded to deliver enhanced performance, user friendliness and options for customization.

The Arkal Super Galaxy is a high-flow rate, self-cleaning, automatic disc filter. It is practical for water and wastewater treatment plants, central water systems for irrigation, large cooling tower power plants, ballast water, and saltwater, as it handles desalination. In addition, it controls algae and reduces hydraulic filtration degrees to less than 20 microns. Its vertical and horizontal installation options accommodate all space issues.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

How researchers at UC Merced are developing a better understanding of the three sources of water upon which California depends in order to adapt to the effects of environmental changes and make better use of this most precious of our natural resources.

Runoff from farmlands can carry nutrients, insecticides and sediment that impact source water for downstream communities.

North Carolina’s Cape Fear River is a massive water system. It stretches across the lower half of the state, collecting runoff from 29 counties and providing water to millions of people. But in the city of Wilmington, where the river meets the Atlantic Ocean, the water has residents worried.

O’Brien, Texas is just one of thousands of small communities in the United States that struggle to find the resources to ensure that the water coming out of the tap is safe to drink. The recent budget proposal by the Trump administration will only make matters worse. Watch this documentary short produced by Tom Rosenberg and Earth Institute fellow Madison Condon details one shrinking town’s drinking water crisis.

The recoating of a potable water tank in Lancaster, PA, included an already tight timeframe and several challenges that cause delays.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.