DRINKING WATER
The Power Of Ductile Iron Pipe: A Solution For Every Application
Ductile iron pipe is a versatile, reliable solution that resists UV degradation, freezing, and physical stress. Its unmatched durability ensures long-term performance in any piping application.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Utility Enjoys More Than Seven Years of On‐Site Sodium Hypochlorite Production
“To me, Microclor® is the top of the line on‐site generation system on the market due to low maintenance and it being very user friendly.” Larry English, Water Quality Manager, Daphne Utilities. Read the full project profile to learn more.
-
How To Future-Proof Your Water Distribution System
How can water utilities address the needs of climate change today while future-proofing the system to make upgrades easier and more cost effective?
-
Drinking Water Disinfection At Lunenberg, Massachusetts, USA Local Community
In this case study, read how the Lunenburg Water District improved their water disinfection system with the installation of an Atlantium RZ300-11 HOD UV system. The system effectively disinfects water, meets future demands, and eliminates chlorine taste and odor.
-
Which Gate Valve Is Best For Today's Waterworks Systems?
Outdated specifications can sometimes lead to confusion regarding which gate valve should be used. Understanding how the standards have evolved and why can help utilities understand the source of this confusion.
-
Protecting Communities With Calgon Carbon's AquaKnight™ Technology
Calgon Carbon’s AquaKnight GC systems are designed from the top down to improve flow, adsorption, and media life.
-
Upgrading From Gas Chlorine To On-Site Hypochlorite Generation To Improve Safety And System Resilience
By replacing gas chlorine with on-site hypochlorite generation, Nashville was able to improve the safety and longevity of its water plants to accommodate the growth of the “Heart of Country Music” far into the future. At a recent water conference, Glen Doss, Treatment Plant Manager stated, “In 2016, the last gas chlorine railcar left to large applause.”
-
A Golden Spike In Revenue, Efficiency, And Customer Service With The R900® System
In 2008, the public utility manager in Ogden City, Utah sent out a request for proposal on a system-wide changeout of its meters, absolute encoders, and radio frequency meter interface units (RF MIUs), with a goal of eliminating estimating and replacing all their meters with AMR technology to read year-round. Read the full case study to learn more.
-
Drinking-Water And Wastewater Infrastructure Act Of 2021: The Breakdown For Metered Technology
In May of 2021, the Senate passed the Drinking Water and Wastewater Infrastructure Act of 2021 (DWWI Act). They have allocated $250 million of grant money, broken down into $50 million segments each year starting in 2022 and ending in 2026. Due to this bipartisan legislation, small public water systems should consider taking advantage of this unique funding opportunity. Keep reading to see if you may qualify.
-
Leveling Up AMI Operations
To take AMI to the next level, water utilities need a solution that allows users to build their own reports and analyses using business intelligence tools.
-
PFAS Filtration: Designing For Smaller OPEX And Footprint
Keys to bring down the cost of PFAS treatment for operations with limited resources — or any operation using media filtration.
DRINKING WATER APPLICATION NOTES
-
Application Note: Using Real-Time Telemetry For Ecological Monitoring Of Coastal Wetlands2/3/2011The Grand Bay National Estuarine Research Reserve (NERR)in Mississippi is one of 27 protected estuarine reserves across the United States. By YSI
-
Leak Detection On Water Distribution Network Using Clamp-On Flowmeters5/22/2023
A global engineering company realized that their leak identification methods were time consuming and expensive, and so began to explore alternative solutions, such as ultrasonic flow meters.
-
Ion Exchange Resins And Activated Carbons For Better-Tasting Water12/18/2013
For many, access to good-tasting tap water is limited, and buying bottled water can be expensive. Simple pour-through jug filters offer a low-cost and effective alternative. Activated carbons, in conjunction with ion exchange products, produce drinking water that is absent of all industrial pesticides and contaminants.
-
LC-MS/MS Analysis Of PFAS Extractables In Polyethersulfone Syringe Filters Using EPA 537.15/18/2022
A key consideration for any PFAS method is to avoid contamination that can impact the accuracy of data, including those coming from sample preparation techniques such as filtration.
-
What Are You Doing To My Pipe: Can PVC Pipe Be Loaded?4/13/2021
The argument has been used that PVC pipe is delicate and can’t be subjected to any kind of loading. In EBAA's years of testing we have found that is not the case at all. PVC can take an extreme amount of strain.
-
Application Note: Desalination Plants: YSI Instruments Monitor Flow & Water Quality At Multiple Stages2/3/2011Desalination is the process of removing salt from sea water or brackish river or groundwater to make potable water. By YSI
-
Solution For Algae Blooms12/17/2015
Harmsco® Filtration Products is pleased to offer a solution to the ever increasing blue-algae blooms in water sources. A multi-barrier approach is necessary to physically remove intact (algae and cyanobacteria) before they rupture in the treatment process and then remove extracellular cyanobacteria through adsorption.
-
UV Technology Offers Solution For Emerging Water Crisis2/19/2014
Many are turning to UV as an effective barrier to enable the reuse of wastewater, for indirect reuse, and aquifer recharge.
-
Industry-Specific Applications For UV Technology6/17/2024
In Microelectronics, Aquafine UV systems provide a synergistic approach towards the reduction of trace organics and microbial contamination for ultrapure water.
-
Reduce Or Eliminate Water Hammer With Valve Positioners5/19/2022
Water hammer, which can occur in just about any pumping system and even steam systems, can lead to pipe breakage, equipment damage or even total system failure. Addressing water hammer at the source is the savviest and most cost-effective way to handle the issue.
LATEST INSIGHTS ON DRINKING WATER
-
Every year on November 19, Water Mission observes World Toilet Day — a day designated by the United Nations to focus on the importance of safe sanitation for all.
-
Global Water Outcomes expert notes that “water utilities are facing unprecedented challenges and opportunities,” citing the role of digital solutions moving forward.
-
In this Q&A, Dr. Elke Süss of Metrohm addresses the urgent need for haloacetic acid testing in response to “one of the most significant updates to EU drinking water monitoring in recent years.”
-
Amazon and Xylem partner to tackle Mexico’s leaking water systems as the country balances water scarcity and a growing tech sector.
-
Water scarcity is increasingly impacting sectors from agriculture and energy to urban planning and high-tech manufacturing. Recently, industry leaders gathered to explore how new technologies and complex industrial demands are forcing a fundamental rethinking of water infrastructure.
-
Nobel-winning molecular materials are poised to reinvent purification, desalination, and reuse.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.