DRINKING WATER

GettyImages-2204179431_450_300 How Artificial Intelligence (AI) Is Transforming Water Loss Management For Utilities

AI is reshaping water loss management by turning complex utility data into clearer priorities, faster insights, and more proactive decision-making—without replacing the people responsible for running the system.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

DRINKING WATER PRODUCTS

The combination of reliable products and expertise in customized solutions.

The Series 1100TDM Tandem MEGALUG restrain ductile iron pipe to mechanical joint fittings, pipe and appurtenances that require high PSI ratings. It consists of one Series 1100 MEGALUG and one Series 1100 MEGALUG with the MJ lip removed as to sit properly behind the first.

The Series NXT3000 High Capacity Gas Feed System is a family of vacuum-operated, solution-feed, gas dispensing components including a vacuum regulator, meter assembly and ejector to meet customer needs for feeding chlorine, sulfur dioxide, ammonia or carbon dioxide gas. The Series NXT3000 is a versatile, high quality system which operates at sonic conditions eliminating the need for differential pressure regulation across the rate control valve.

Increase filtration capacity and performance in existing footprint.

ADVANCE™ Series 200 gas feeders are designed for or automatic gas regulation. Automatic operation requires a simple addition of a motorized control valve.

Endress+Hauser launched E-direct, an online store that allows customers to easily and securely order high quality measurement products at competitive prices.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

Water utilities need reliable data to meet regulatory demands, manage operations, and deliver excellent customer service. Master Meter’s Allegro AMI and Allegro Mobile technologies offer smart, scalable solutions to support these needs. Allegro AMI provides hourly data on consumption, tampering, and leaks, automatically sent to the utility office.

Alex and the crew travel to Saudi Arabia and talk to Noura Shehab, a Ph.D. student at King Abdullah University of Science and Technology (KAUST), about her research to use microbes to power sea water desalination.

This 45-minute webinar will explore the latest technology and methodologies that are transforming water management. Participants will gain a comprehensive understanding of how real-time data analytics can significantly enhance the efficiency and accuracy of water-loss detection and proactive management.

Bluefield Research analyst, Erin Bonney Casey, presents on water reuse markets in the U.S. during the WateReuse Association's One Water Innovations Press Workshop at WEFTEC 2014 in New Orleans, Louisiana.

Fresh off TrojanUV being named manufacturer of the year by the WateReuse Association, Water Online caught up with Jennifer Muller, Vice President of Global Municipal Sales for TrojanUV at this year’s WEFTEC, to understand how ultra violet systems are being applied in the growing movement towards direct and indirect potable water reuse.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.