DRINKING WATER
Rural North Texas Community Cuts Non-Revenue Water By 42% With Pipeline Leak Detection Technology
Discover how a city solved its non-revenue water challenge by rapidly pinpointing three hard-to-find leaks in 13 miles of aging pipeline using a free-swimming acoustic tool.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Expansion And Upgrade Of WWTP Ozone Disinfection System Reduces Energy Cost By 69%
The financial cost to maintain their ozone equipment, and increasing scarcity of replacement parts for their ozone generator, motivated a utility in Springfield, MO, to upgrade their ozone system. Read the full case study to learn how the plant assessed the energy cost of a sidestream ozone injection system compared to that of a turbine mixing design and showed that the Mazzei retrofit design reduced the energy cost of ozone contacting by an average of 69.2% under all plant flow conditions.
-
Innovative Project In Virginia Changes Lens On Wastewater
In September of 2016, Ted Henifin took the first sip of water purified at a pilot treatment plant developed by HRSD (Hampton Roads Sanitation District). Now, the innovative water treatment program known as SWIFT — Sustainable Water Initiative for Tomorrow — is changing the lens through which communities and government officials view wastewater, drinking water, aquifer replenishment, and even fighting sea level rise.
-
Treating Trace Contaminants In Drinking Water - Aurora, Colorado
To protect residents from environmental contaminants, the City of Aurora set stringent water treatment goals, and adopted an advanced treatment process at the Aurora Reservoir Water Purification Facility.
-
What's Missing From Your Water-Monitoring Strategy?
When it comes to water quality monitoring, professionals in municipal, industrial, and agricultural applications might have distinctly different concerns about what they measure, but they all share a common concern about the cost and ease of obtaining that data. Fortunately, a new alternative for achieving water quality data and analytics with a high degree of autonomy, accuracy, and affordability is now available to all of them.
-
Long Term Performance Of V-Cone Flow Meters
This paper presents the results of 12 V-Cone DP Flow meters tested over a period of 17 years. Service applications for the V-Cones included natural gas as well as coke oven gas measurement, a dirty aggressive fluid that is problematic over long period of time for most flow meters. All testing was conducted in air by a 3rd party calibration laboratory, CEESI Colorado. Results will be presented for each of the meters over the 17 year span. Conclusions and recommendations will be made to the long term performance and recalibration intervals for the V-Cone flow meter.
-
Tri-City Water Infrastructure Partnership: When 'We' Is Better Than 'Me'
This is a story about three cities in North Carolina: Albemarle, Concord and Kannapolis. Albemarle, 40 miles east of Charlotte, had excess capacity in its water system and needed new customers to defray costs.
-
NE Alabama Water District Case Study Northeast Alabama Water District (NEAW) services 15,200 connections within 2,052 square miles, resulting in a very large distribution area.
-
Supercharging Acoustic Leak Detection With Analytics
The integration of advanced analytics can take acoustic leak detection systems to another level by leveraging noise filtering, pattern recognition, and comprehensive data analysis.
-
Use Of UV Technology Gaining Acceptance Within Process Industries
The use of Ultra Violet (UV) technology within process industries has grown tremendously in recent years. Water, fruit juice, syrup and brines are increasingly seen as the largest volume ingredient in many food products, and the need to protect human health, whilst reduce the level of chemical preservatives, and to extend shelf life leads to the incorporation of UV systems within the food manufacturing process.
-
Condition Assessment At Spring Creek Ranch
Learn why Spring Creek Ranch chose Echologics to survey 1.7 miles of 12-inch ductile iron pipe, utilizing the ePulse® method to assess the condition of the over 40-year-old pipes.
DRINKING WATER APPLICATION NOTES
-
Ultrasonic Level Measurement In Water And Wastewater Plants5/19/2016
Radar technology is often viewed as the “best” method of level measurement, but this isn’t necessarily true in the water industry.
-
'TOTEX' Is Key When Purchasing Instrumentation4/29/2021
There’s a lot to be considered in the price tag of an ultrasonic instrument. Derek Moore from Siemens explains how the historical way of thinking only of capital costs needs to change to the more holistic approach of total expenditures.
-
Application Note: Troubleshooting A pH Electrode1/26/2011
Many factors affect performance of a pH electrode. When performance degrades, it is always a challenge for the analyst to identify the cause. Common troubleshooting procedures, which include evaluation of slope, electrode drift, time response, and accuracy, take considerable time. By Thermo Fisher Scientific
-
Simplify And Optimize Your Process With Level And Pump Control3/1/2022
Level controllers have evolved to meet today’s environmental challenges and industry demands. Learn how they support improved process management and, ultimately, a better bottom line.
-
Pikeville, Kentucky Medical Center Leak Found Despite Ambient Noise6/23/2021
Leaks found in 60 psi high density PE pipe by FELL in less than three hours. Acoustic and CCTV failed to find any leaks after more than a year of investigation. Read the full case study to learn more.
-
Real-Time Water Quality Data For Agriculture9/23/2020
We arm farmers with mission-critical water data to help enhance crop yield and taste. KETOS delivers valuable insights for fluctuations in deficiency and toxicity.
-
Activated Carbon And Adsorption Of Trichloroethylene (TCE) And Tetrachloroethylene (PCE)12/30/2013
Trichloroethylene (TCE) and Tetrachloroethylene (PCE) are two of the most common solvents that contaminate groundwater supplies in the United States. Both solvents see frequent use in the extraction of fat, in the textile industry, in the production of various pharmaceutical and chemical products. TCE is also used as a degreaser from fabricated metal parts, and PCE serves as a component of aerosol dry-cleaning solvents.
-
Application Note: Continuous Monitoring Of Drinking Water Provides Assurance Of Safety9/28/2005A water utility in Ohio wanted to learn more about the variability of water quality parameters such as pH, ORP, turbidity, and chlorine. Previously, most of these parameters had been measured by spot sampling protocols with only a few measurements during a daily period. In order to more accurately assess the water variability, the utility used a YSI 6920DW Drinking Water Multiprobe
-
Hydrogen Sulfide Removal From Water Using AquaSorb® CX-MCA2/19/2014
The “rotten egg” odor in some water supplies is caused by sulfide in water. Sulfide can be treated using oxidation techniques, the goal being to convert the sulfide to high oxidation state species such as sulfate to eliminate the taste and odor concerns. Traditional oxidation techniques such as ozone and chlorine can be used, but can be expensive due to the equipment required to add and monitor the oxidant, and can lead to by-products such as trihalomethanes (THMs), which are regulated in drinking water supplies.
-
Panametrics Technology Helps Track Potable Water Leaks4/22/2022
Concerned about the volume of water leakages throughout their network, a Swedish water authority turned to Panametrics flowmeters to map their municipal water network -- enabling quick leak identification and fixes.
LATEST INSIGHTS ON DRINKING WATER
-
This Q&A follows the Webinar: Beaverton's New AMI Solution Checks Every Box: Operations, Billing, Service, & Savings hosted by Water Online on October 21, 2025. The webinar featured the leadership team from Beaverton Water Division as they discussed lessons learned across operations, billing, and customer service, offering a 360-degree perspective on implementing and managing an AMI system.
-
Amid the AI-fueled gold rush, more leaders are beginning to pay attention to the short- and long-term natural resource concerns, especially around all the water needed to keep data centers running.
-
Water pricing often fails to reflect scarcity, quality, or long-term risk, forcing companies to act internally. But this action is not being done in a vacuum. The ripple effect of internal water pricing is bound to impact water utilities, and ultimately, ratepayers and consumers.
-
Misinformation and confusion could prevent some utilities from benefitting from the aqueous film-forming foam multidistrict litigation (AFFF MDL) settlements. Here are five common myths about the AFFF MDL PFAS settlements and how public water systems can make the most of this unprecedented funding opportunity.
-
Every year on November 19, Water Mission observes World Toilet Day — a day designated by the United Nations to focus on the importance of safe sanitation for all.
-
Global Water Outcomes expert notes that “water utilities are facing unprecedented challenges and opportunities,” citing the role of digital solutions moving forward.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.