DRINKING WATER
Why Planning Is The Hero Of AMI Deployment
Thorough planning, accurate data, and strong communication are the keys to successful AMI deployments, preventing costly disruptions and ensuring technology delivers long-term operational and customer service value.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
What Facility Managers Are Saying About Online Zeta Potential
A chat with Larry Wilt of American Water/Tolt Water Treatment Plant in Seattle, WA gets to the heart of what facility managers have to say about online Zeta potential.
-
Droughts, Pandemics, Recessions, And More: How Machine Learning Can Help Water Utilities Prepare
Learn about some of the situations that can cause extreme changes in water usage patterns and how machine learning can help water utilities adapt.
-
Filter Membrane Predictive Maintenance
At manufacturing operations using ultrafiltration systems, the ultrafiltration membranes are used for numerous batches without replacement, using Clean-In-Place (CIP) operations in between batches to maintain filter performance. However, ineffective CIP cycles or long-term fouling or degradation of the filter membrane can result in increased cycle times to move the desired amount of product through the filter, lost yield as the product is unable to permeate the filter, or poor product quality as membrane failure may occur.
-
Dewatering Never Sounded So Good: Noise Management At Metropolitan Utility Repair Sites
When the jobsite is in an urban or metropolitan area measures must be taken to try to minimize the perception of nuisance or harm. Utility contractors face this situation often when they are called to make repairs.
-
Choosing A Flow Measurement Technology
Flow, pressure, and temperature are the most important units of measurement when monitoring or controlling fluids in pipes. They are early indicators for problems that can have major implications for the overall business.
-
Integrated Membrane Facility In The City Of Delaware, Ohio
To better comply with the Long Term 2 Enhanced Surface Water Treatment Rule (LT2) the City of Delaware (Ohio) piloted Torayfil hollow-fiber PVDF membrane modules to treat surface water for their 7.2 mgd full-scale facility. After significant review of the data, cost, and other factors, the City and URS selected Toray to utilize in the full scale design. Read the full case study to learn more.
-
Protecting Communities With Calgon Carbon's AquaKnight™ Technology
Calgon Carbon’s AquaKnight GC systems are designed from the top down to improve flow, adsorption, and media life.
-
Unseen Infrastructure: The Underground Networks That Keep The World Turning
In this article, read about the importance of unseen water infrastructure and the need for investment and maintenance. Explore the processes and challenges involved in delivering clean water and managing wastewater.
-
Water Distribution System Challenges And Solutions
Limited new natural water sources, especially in the southwest region of the USA, and rapidly increasing population has led to the need for innovative methods to manage a water supply system.
-
SuperDisc™ Filtration System Case Study
Glendale Heights Wastewater Treatment Plant discharges treated water to the East Branch of the DuPage River in Illinois.
DRINKING WATER APPLICATION NOTES
-
Complete Flow Solutions11/11/2024
Siemens’ extensive portfolio includes various flow measurement technologies, such as Coriolis, clamp-on ultrasonic, vortex, and differential pressure meters, catering to a wide range of industrial needs.
-
Application Note: Water Flows From The Golden Hills Of California1/20/2010Each morning John Johnson drives the few miles from his smalltown home in northern California to the Center at Pardee Reservoir. Nestled among the foothills of the Sierra Nevada mountain range, the reservoir is a long 100 miles away from San Francisco Bay. By YSI
-
Determination Of Pesticide Residue In Vegetables9/10/2014
QuEChERS is a Quick-Easy-Cheap-Effective-Rugged-Safe extraction method that has been developed for the determination of pesticide residues in agricultural commodities.
-
Flow Monitoring At Sea Water Reverse Osmosis Plant Improves Water Distribution1/6/2025
Read about a desalination plant that was in need of a practical verification methodology for permanent and/or temporary (portable) solutions on large pipes.
-
Deployment Of NextStep In Reverse Osmosis Systems1/15/2026
Pulsafeeder has secured a significant order for its NextStep series of stepper motor-driven metering pumps, specifically for use in advanced Reverse Osmosis (RO) applications. This deployment underscores the growing demand for precision chemical dosing in high-performance water treatment systems. The order includes NextStep NS1 and NS9 models, each selected for their unique capabilities in high-pressure and low-pressure RO environments.
-
Application Note: YSI 600 Optical Monitoring System Used To Protect Lake Oconee, Georgia Water Quality12/27/2005Northern Georgia is experiencing unprecedented development; consequently, water quality in many of its watersheds is in jeopardy of severe degradation. The State of Georgia, Environmental Protection Division (EPD) has implemented an NPDES monitoring and enforcement program designed to prevent construction activities from impacting water quality
-
'TOTEX' Is Key When Purchasing Instrumentation4/29/2021
There’s a lot to be considered in the price tag of an ultrasonic instrument. Derek Moore from Siemens explains how the historical way of thinking only of capital costs needs to change to the more holistic approach of total expenditures.
-
UV Technology Offers Solution For Emerging Water Crisis2/19/2014
Many are turning to UV as an effective barrier to enable the reuse of wastewater, for indirect reuse, and aquifer recharge.
-
Fountain Testing Solutions10/29/2021
Accurate fountain (dampening) solution concentration control is essential for consistent, high-quality results in lithography. Low concentration can cause drying on the non-image area of the plate resulting in tinting, scumming, blanket piling, etc. High concentrations, on the other hand, bring about over-emulsification of the ink. This results in weakening of color strength and changes in ink rheology (body and flow properties). Correct concentration will allow the non-image areas of the plate to be appropriately wetted.
-
Industry-Specific Applications For UV Technology6/17/2024
In Microelectronics, Aquafine UV systems provide a synergistic approach towards the reduction of trace organics and microbial contamination for ultrapure water.
LATEST INSIGHTS ON DRINKING WATER
-
The White House has finalized plans to roll back rules under the National Environmental Policy Act (NEPA), narrowing its focus and limiting what the current administration claims are needless delays for federal approval of water, energy, and other infrastructure plans. For water and wastewater utilities, the changes could speed up permitting for critical projects, although experts warn the tradeoffs could do more harm than good.
-
Setting Global Standards: Inside North America's Only Full-Scale UV Disinfection Validation Facility
Portland's industry-leading facility reaches 100 reactor validations in 23 years.
-
Given the maturation of sensor technology, the scientific and operational hurdles to portable lead analysis are somewhat surprising — but surmountable.
-
Bathymetric modeling maps underwater terrain. It also helps guide planning, prevent hazards, and build climate-resilient infrastructure.
-
The data center industry stands at a critical juncture. As facilities scale to meet exponential computing demands, water consumption has emerged as a defining operational challenge. Traditional approaches focused on water efficiency are no longer sufficient.
-
When pregnant women drink water that comes from wells downstream of sites contaminated with PFAS, known as “forever chemicals,” the risks to their babies’ health substantially increase, a new study found. These risks include the chance of low birth weight, preterm birth, and infant mortality.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.