DRINKING WATER
Building Resilient Water Treatment: How Ozone Systems Help Utilities Prepare for Extreme Weather
Ozone systems build resilience into water treatment. They ensure utilities remain chemically self-sufficient, allow fast recovery from power outages, and handle rapid water quality shifts.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Butler WTP Solves Membrane Integrity Issues And Meets EPA LT2 Rule With Aqua MultiBore® Membranes
Butler Water Treatment Plant (WTP), located in Missouri, receives its influent from a surface water impoundment fed from Butler Lake, Maris de Cygenes River, and Miami Creek. Following treatment, it provides potable water to over 300 businesses, (4) schools, 4100 residents and (4) other Public Water Supply districts.
-
Taking An Affordable Approach To Smart Water And IoT Technology
Here are several ways that even smaller utilities can implement affordable technologies to improve visibility into what’s happening in key areas of their systems.
-
LCR Revisions Push Systems Into Uncharted Waters: Schools & Childcare Facilities
Here are some thought-provoking considerations for water testing at K-12 schools and the utilities, government officials, and engineering firms who serve them.
-
Encapsulation Fittings: The Pipe Repair Solution You Didn't Know You Need
Encapsulation fittings offer a solution to pipe repairs involving difficult-to-access lines, critical lines to users such as hospitals, intercity areas, or major traffic arteries.
-
Community-Driven Algal Monitoring: Empowering Local Stewards
As algal blooms become more frequent and severe due to nutrient pollution and climate change, community-driven monitoring efforts are playing a vital role in safeguarding water quality and ecosystem health. Local stewards—citizens, educators, nonprofit groups, and tribal communities—are increasingly stepping up to fill critical data gaps, improve early detection, and advocate for more responsive environmental management.
-
Theoretical Operation Of High-Efficiency Ultraviolet Water Treatment Chamber
The NeoTech Aqua ReFleX™ water purification chambers are the most efficient and compact units available today. They require an order of magnitude less energy and less than 25% of the system volume to achieve the same or better purification result as competing chambers. This is the first in a series of three white papers explaining the benefits of these systems. By J. R. Cooper, Ph.D, NeoTech Aqua Solutions, Inc.
-
Long-Term Performance And Boron Rejection Of LG SWRO Membranes In Malta Desalination Plants
Malta is an archipelago of three islands situated in the Mediterranean Sea, around fifty miles south of Sicily. There are no rivers of any significance on the islands, and the sparse annual rainfall is only about 500 mm. In order to bridge the gap between supply and demand, Malta has long ago started desalination of seawater. The technologies were initially based on evaporation. In 1981 the Government decided to invest in RO desalination capacity.
-
Silver Eagle Refinery Case Study North Salt Lake and West Bountiful are home to several large oil refineries. These large plants have several smoke stacks, open burning flares, and round storage tanks.
-
Advanced Leak Detection Safeguards Water In Utqiaġvik, Alaska
In the remote Arctic village of Utqiaġvik, Alaska — where extreme winters and frozen terrain make traditional water system maintenance nearly impossible — the Ukpeaġvik Iñupiat Corporation (UIC) faced a critical threat: a persistent underground leak draining over 10,000 gallons of water per day.
-
Clearing Up Misconceptions About Turbidimeter Performance And Calibration
There is little doubt about the importance of taking turbidity readings as part of drinking water treatment. However, there are certain misperceptions about the associated requirements and procedures needed to confirm the validity of those readings.
DRINKING WATER APPLICATION NOTES
-
VFD Energy Savings For Pumping Applications4/6/2017
In the early days of variable frequency drive (VFD) technology, the typical application was in process control for manufacturing synthetic fiber, steel bars, and aluminum foil.
-
Free Chlorine Measurement In Drinking Water Treatment12/21/2005
Before water can be used as a safe and reliable source for drinking water, it must be properly treated. Since water is a universal solvent, it comes in contact with several different pathogens, some of which are potentially lethal, and inactivation is accomplished through chemical disinfection and mechanical filtration treatment. This treatment consists of coarse filtration to remove large objects and pre-treatment which includes disinfection using chlorine or ozone
-
Automatic Rinse Tank Controls10/29/2021
Proper rinsing is one of the most important steps in quality manufacturing or metal finishing. Plenty of low cost, good quality water for rinsing has been available in the past, so rinse water conservation has been largely ignored.
-
Activated Carbon And Adsorption Of Trichloroethylene (TCE) And Tetrachloroethylene (PCE)12/30/2013
Trichloroethylene (TCE) and Tetrachloroethylene (PCE) are two of the most common solvents that contaminate groundwater supplies in the United States. Both solvents see frequent use in the extraction of fat, in the textile industry, in the production of various pharmaceutical and chemical products. TCE is also used as a degreaser from fabricated metal parts, and PCE serves as a component of aerosol dry-cleaning solvents.
-
The Role Of Zeta Potential In Water Treatment Process Control5/27/2020
Physical processes such as sedimentation, flotation and filtration remain at the heart of most process trains for the treatment of water and wastewater flows.
-
Best Practices In Moist And Wet Gas Flow12/20/2021
The Wet Gas MASSter sensor is for use in applications that have a high level of moisture or condensation present in the gas flow stream that cannot otherwise be removed.
-
TOC Monitoring In Process Return Condensate4/23/2021
Industrial power plants or co-generation power plants utilize steam for industrial purposes other than power production.
-
Water Determination In Liquefied Petroleum Gas Using GC BID And Ionic Liquid Column Watercol™6/28/2018
Water in petrochemical feedstocks can cause problems for processors. Freezing of pipe lines and valves and poisoning of expensive catalysts are just a few examples.
-
Determination Of EN15662:2008 - Determination Of Pesticide Residue In Food Of Plant Origin, By An Automated QuEChERS Solution9/24/2014
Pesticide residue laboratories are required to undertake analyses of an ever increasing number of samples. The analyses typically involve use of multi-residue methods (both GC-MS and LC-MS) to test for over 500 pesticide residues.
-
How To Install A Submersible Pump In Discharge Tubes11/28/2012
In the fields of water and waste water technology, submersible pumps represent a viable economic and technical alternative to conventional, dry-installed pumps. In particular, they offer a number of handling advantages during maintenance and installation work.
LATEST INSIGHTS ON DRINKING WATER
-
Water scarcity is increasingly impacting sectors from agriculture and energy to urban planning and high-tech manufacturing. Recently, industry leaders gathered to explore how new technologies and complex industrial demands are forcing a fundamental rethinking of water infrastructure.
-
Nobel-winning molecular materials are poised to reinvent purification, desalination, and reuse.
-
Researchers have developed polyimide-based membranes for membrane distillation (MD) that overcome three persistent issues in membranes for water treatment and gas separations: the need for pore-forming chemicals that prevent recycling, performance degradation due to pore wetting and fouling, and the inherent trade-off between high water flux and selectivity.
-
Small municipalities and industrial sites face constant pressure: deliver safe, stable water with limited resources and tight deadlines. Traditional on-site construction can stretch project schedules by months and introduce quality and cost risks. By shifting much of the fabrication off-site, these risks are dramatically reduced.
-
The 2024 hurricane season was one of the most severe on record, creating unprecedented destruction to the tune of $182.7 billion worth of damage. Scientists predict that this year's storm season, which officially began June 1, will likely be highly active and volatile as well. As hurricanes become more difficult to accurately predict and prepare for, the damage caused by burst pipes, flooding, downed trees and debris, and disrupted utilities is also increasing.
-
How Edison vs. Tesla shapes today's approach to sustainable water systems.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.