DRINKING WATER

Water Algae Cells-GettyImages-1328660998 Using Biological Competition To Suppress Algae Growth

Effective algae control shifts the focus from removal to nutrient management. By leveraging bioaugmentation to outcompete algae for nitrogen and phosphorus, facilities can stabilize pH levels and dissolved oxygen, ensuring long-term pond clarity and consistent wastewater treatment performance.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

DRINKING WATER PRODUCTS

ULTRAPEN™ PT4 is Myron L Company’s ground-breaking new pocket tester for measuring free chlorine disinfecting power, free chlorine equivalent (FCE), and temperature. It is waterproof and designed for accuracy and simplicity for use in diverse water quality applications.

Endress+Hauser offers a complete assortment of compact thermometers, modular thermometers, thermowells, measurement inserts, transmitters and accessories for all types of process industries such as Oil & Gas, Chemicals, Food & Beverage, Life Sciences, Primaries & Metal, Power & Energy.

Combining a general-purpose detector with an amplifier, the ModMAG M2000 electromagnetic flow meter features an advanced, user-friendly design that is built for field verification testing with the use of a simple, handheld device. 

The HYMAX VERSA is a coupling that can wrap around damaged pipe usually repaired with the cut-and-replace technique while providing dynamic deflection to reduce the risk of damage caused by ground shifts.

Understand your pipe condition without impacting service using ePulse Optimize and ePulse Discovery.

Recordall® Turbo Series meters are the smart choice for larger facilities, including hotels, apartment buildings, and commercial and industrial buildings. The direct-coupled turbine uses an exclusive floating rotor design that reduces bearing friction and associated wear to provide greater accuracy and a longer service life.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

See how SIWA MDM user experience is easy with various billing tiles and screens to help optimize the billing processes. Quickly see billing readiness, request activity in a highly configurable dashboard.

Appearing on The Weather Channel's "Wake Up With Al" morning show, water expert Dan Theobald puts drinking water to the test by measuring total dissolved solids (TDS) in tap water samples from Brooklyn, Manhattan, and New Jersey, as well as bottled water samples.

Scientists are developing new motors that are tiny and soft. They run on things like light, magnetic effects or chemical solutions. And they can serve specific functions — including cleaning up pollution.

During the summer months, El Paso experiences a spike in water demand increasing the dependency on river water. But what happens if there is little or no river water?

Toxins from harmful algal blooms are increasingly contaminating source waters, as well as the drinking water treatment facilities that source waters supply. EPA researchers are helping the treatment facilities find safe, cost effective ways to remove the toxins and keep your drinking water safe.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.