DRINKING WATER
Why Planning Is The Hero Of AMI Deployment
Thorough planning, accurate data, and strong communication are the keys to successful AMI deployments, preventing costly disruptions and ensuring technology delivers long-term operational and customer service value.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Register Today: Why Insertion Valve Technology Is The Future Of Installing Distribution System Control Points
AVT is finding more and more that the number of control points added when water systems are designed are not sufficient for the current demands on the systems. So, what do water system operators do?
-
The Enduring Value Of Ultrasonic Level Measurement In Water And Wastewater Level Applications
Discover how using ultrasonic technology allows level and pump controllers to progress in ways that enhance both accuracy and usability — rather than remaining static.
-
Advanced Analytics Solutions Used To Implement State-Wide Monitoring Program To Improve Asset Reliability And Resiliency
Air Selangor is a large water distribution company owned by the Malaysian state of Selangor. The public utility serves a population of 84 million residents and manages over 6200 kilometers of trunk mains, ranging from 300mm up to 2200mm, with much of the pipelines located in remote areas of the state.
-
The Differences Between UV AOP & Granular Activated Carbon For Contaminant Treatment
Providing safe drinking water is a growing challenge. There are certain chemical contaminants resistant to traditional water treatment methods which are being detected in drinking water – with the potential to impact public health.
-
Filtration Solution For Arsenic Removal From Well Water
Select Harvest was in need of a filtration solution to remove high levels of arsenic from their well water supply. Learn how Applied Process Equipment helped them remove arsenic to non-detectable levels.
-
Project Profile: Meadow Lake MHC White Lake, MI 750 GPM Iron & Manganese System
In February 2008 AdEdge Technologies, Inc. was selected as the sole vendor by Sun Communities, a nation wide owner and operator of Mobile Home Communities, to supply an iron and manganese treatment system, for the Meadow Lake MHC in White Lake, Michigan. By Adedge Technologies Inc.
-
What You Need To Know About Mixed Oxidant Solution
The main component of mixed oxidant solution (MOS) is chlorine and its derivatives hypochlorite and hypochlorous acid (ClO−, HClO). It also contains trace amounts of other chlor-oxygen species which work synergistically with the hypochlorite/hypochlorous acid to improve efficacy and performance. MOS is made from brine (salt) and energy, and is used for disinfecting, sanitizing and reducing the risk of infection due to pathogenic microorganisms in water and in other applications. It is particularly useful for customers who have specific challenges such as controlling biofilm or reducing disinfection byproducts exacerbated by biofilms.
-
Case Studies Make A Strong Case For Ozone Sidestream Injection
This article will explore various SSI systems and the principal benefit that each setup delivers.
-
Plant Taps Pacific Ocean As Source Of Drinking Water
With its dedication in December 2015, the $1 billion Claude “Bud” Lewis Carlsbad Desalination Plant opened a spigot to the Pacific Ocean, creating a new, drought-proof source of drinking water for 3.1 million people in San Diego County, CA.
-
Big Sky, Montana Water District Enhances Operations With Xylem
Discover how smart technology helped a Montana utility advance leak detection and customer service goals.
DRINKING WATER APPLICATION NOTES
-
Take Control Of Your Water Distribution Network With Digitalization And Remote Monitoring5/19/2022
Any process plant constantly generates a high volume of status data. Today, this data can be extracted from the plant, stored, analyzed, and prepared to meet operator needs and lower marginal costs.
-
Pipe Repair On A Budget3/7/2014
A new pipe-repair solution promises to save time and money, while also being sustainable, long-lasting, fully scalable, and safe for workers.
-
SensyMaster Thermal Mass Flowmeter8/3/2021
SensyMaster helps to improve the operating costs of the most cost intensive process in sewage plants: Aeration. High-measuring performance and state of the art technology helps customers increase plant efficiency.
-
Ion Exchange Resins Reduce Pollution From Refineries12/23/2013
A single operational oil and gas refinery produces millions of gallons of contaminated wastewater a year, leading to environmental pollution concerns. Ion exchange resins are a metal- and ion-removal solution to help clean this wastewater for plant reuse or safe disposal. This application guide explains how resins can be used to demineralize refinery water in process, boiler, and cooling water applications.
-
Analysis Of Pesticide Residue In Spinach Using The AutoMate-Q40 An Automated QuEChERS Solution10/16/2014
QuEChERS is a Quick-Easy-Cheap-Effective-Rugged-Safe extraction method that has been developed for the determination of pesticide residues in agricultural commodities.
-
The Basics: Keeping Our Water Clean Requires Monitoring4/30/2014
Keeping the water in our lakes, rivers, and streams clean requires monitoring of water quality at many points as it gradually makes its way from its source to our oceans. Over the years ever increasing environmental concerns and regulations have heightened the need for increased diligence and tighter restrictions on wastewater quality.
-
Determination Of Hexanal In Foods Utilizing Dynamic Headspace4/9/2015
Hexanal is one of many well-documented aromatic components that contribute to flavor and aroma in common consumer food products containing omega-6 fatty acids. Hexanal content is also used to measure the oxidative status of foods rich in omega-6 fatty acids.
-
Oxidation Reduction Potential10/29/2021
What is ORP? Oxidation Reduction Potential or Redox is the activity or strength of oxidizers and reducers in relation to their concentration. Oxidizers accept electrons, reducers lose electrons. Examples of oxidizers are: chlorine, hydrogen peroxide, bromine, ozone, and chlorine dioxide. Examples of reducers are sodium sulfite, sodium bisulfate and hydrogen sulfide. Like acidity and alkalinity, the increase of one is at the expense of the other.
-
Reducing And Reusing Water In Steel Manufacturing2/28/2022
The art of manufacturing steel for industries is well over 100 years old. Within this time, the steel business has fulfilled consumer needs, including construction, transportation, and manufacturing. The steel manufacturing process is quite intensive as it requires a lot of water to cool down the application. Steel plants constantly look for strategies that can help sustain the steel for a longer time by efficiently improving water and energy consumption.
-
(E)-2-Nonenal In Beer4/5/2015
Numerous compounds contribute to changes in beer flavor as it becomes stale. One of these compounds, (E)-2-nonenal, has been investigated as a major source of the papery/cardboard flavor that develops in aged beer.
LATEST INSIGHTS ON DRINKING WATER
-
The data center industry stands at a critical juncture. As facilities scale to meet exponential computing demands, water consumption has emerged as a defining operational challenge. Traditional approaches focused on water efficiency are no longer sufficient.
-
When pregnant women drink water that comes from wells downstream of sites contaminated with PFAS, known as “forever chemicals,” the risks to their babies’ health substantially increase, a new study found. These risks include the chance of low birth weight, preterm birth, and infant mortality.
-
Beaverton Water Division’s transition to Kamstrup AMI and acoustic leak detection is modernizing meter reading, reducing infrastructure costs, improving leak identification, and streamlining operations as deployment progresses.
-
Learn how the Mustang Bayou Service Area (MBSA) Water System Improvements project delivered a fast-tracked, multi-phase response to rapid development and critical capacity challenges in one of the Missouri City’s fastest-growing regions.
-
As water systems grow more complex and climate patterns shift, Legionella is emerging as one of the most persistent and underestimated risks in the built environment. The threat to public health from Legionnaires' disease will likely further escalate unless decisive action is taken.
-
The city of Jackson faced a water crisis that went beyond the tap. What began as an ambitious plan to modernize its water metering infrastructure in 2014 became a logistical and financial nightmare, costing the city millions in lost revenue and declining public trust. Metering as a Service (MaaS) offered the city an alternative option.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.