DRINKING WATER

ashland-water-intake AMERICAN And Partners Install Boltless Restrained Underwater Pipeline System In Ashland, Wisconsin

Beneath the waters of Chequamegon Bay on Lake Superior in Ashland, Wisconsin, about 4,500 feet of 24-inch AMERICAN Flex-Ring Ductile Iron Pipe and a submerged timber crib intake structure were installed to ensure the city’s residents have quality drinking water for the next 100 years. The Ashland Water Intake Project began May 1, 2025, and is now complete.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

  • Determination Of Pesticide Residues In Honey, By An Automated QuEChERS Solution
    9/17/2014

    The QuEChERS (Quick-Easy-Cheap-Effective-Rugged-Safe) sample extraction method was developed for the determination of pesticide residues in agricultural commodities.

  • (E)-2-Nonenal In Beer
    4/5/2015

    Numerous compounds contribute to changes in beer flavor as it becomes stale. One of these compounds, (E)-2-nonenal, has been investigated as a major source of the papery/cardboard flavor that develops in aged beer.

  • The Basics: Keeping Our Water Clean Requires Monitoring
    4/30/2014

    Keeping the water in our lakes, rivers, and streams clean requires monitoring of water quality at many points as it gradually makes its way from its source to our oceans. Over the years ever increasing environmental concerns and regulations have heightened the need for increased diligence and tighter restrictions on wastewater quality.

  • TOC Monitoring In Process Return Condensate
    4/23/2021

    Industrial power plants or co-generation power plants utilize steam for industrial purposes other than power production.

  • Immediate pH Correction For Fluctuating Flow
    2/19/2014

    In a number of water, wastewater and industrial process applications, pH is one of the most critical and highly sensitive analytical measurements.  Examples of critical pH applications include: Reverse Osmosis (RO) systems in which a controlled feed of caustic solution is typically added to the feed stream in order to convert a portion of dissolved carbon dioxide into bicarbonate precipitate allowing for removal by the RO membrane. By Rafik H. Bishara, Steve Jacobs, and Dan Bell

  • Flow Meter Enhances Chlorination System Performance For Municipal Water Department
    12/12/2017

    The water municipality at a mid-size city in the Western region of the U.S. serving a population of about 180,000 people needed to address a chlorine disinfection system problem at one of its water treatment plants.

  • Analyzing Total Organic Carbon In Sea Water
    4/2/2015

    The analysis of Total Organic Carbon (TOC) in seawater can be both challenging and expensive. The concentration of organic carbon in seawater is of considerable interest. The effect this matrix can have on TOC analyzers can lead to rapid consumable turnover, costly maintenance and repairs.

  • The Active Control Program For Advanced UV Oxidation
    12/1/2025

    This application note will explore how active control programs lower operational costs of compliant contaminant removal. 

  • Circuit Board Cleanliness Testing
    10/29/2021

    Contamination of circuit boards can bring about severe degradation of insulation resistance and dielectric strength. Cleanliness of completed circuit boards is, therefore, of vital interest. For those companies who have established circuit board cleaning procedures, the MIL Spec P-28809 has been used as a guideline for control. Now a simple "on line" test for the relative measurement of ionic contamination has been developed.

  • Why Should We Care About NSF/ANSI 61 Certification?
    3/17/2021

    According to National Sanitation Foundation (NSF) and the American National Standards Institute (ANSI), it's a set of standards relating to water treatment and establishes criteria for the control of equipment that comes in contact with either potable water or products that support the production of water.

DRINKING WATER PRODUCTS

For more than 50 years, metallic zinc coating has provided proven, active corrosion protection for ductile iron pipe, helping utilities extend service life in a wide range of soil and environmental conditions.

Positioners are essential to the smooth and reliable operation of your process. They play a vital role in ensuring the best possible performance throughout your plant. A great example is our new electropneumatic positioner, the SIPART PS100. Its ease and speed of initialization make it a winner for valve manufacturers, the chemical industry, the energy sector, and many other fields. Special benefits of the SIPART PS100 include robust construction and ease of operation.

Pre-engineered, fully automated, low maintenance system for applications with average flows of 1 MGD or less; and up to 4 MGD. Proven FlexRake technology is paired with a perfectly-sized washer compactor to seamlessly remove, clean, compress and discharge screenings 10 ft in any direction.

For financial leaders and engineers, every investment must drive efficiency, reliability, and long-term savings. Pinnacle Ozone Solutions delivers cutting-edge ozone systems designed to reduce costs, improve performance, and future-proof operations.

Swan has long been a trusted source for photometric analyzers like chlorine, phosphate and silica. Now with the Seres OL line you'll find added measurement options with applications across a spectrum of industries. Click below for more details on specific models.

The Series 1100HV is a restraint made for existing push-on joints on large diameter C900 PVC pipes. It is built from ASTM A536 ductile iron and has a MEGA-BOND® Restraint Coating System. 

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

In this episode of Ozone Talks, host Sannel Patel takes viewers deep inside Pinnacle Ozone Solutions’ cutting-edge ozone generation technology. Joined by senior engineer Eric Francis and technician Dayton Julius, the discussion centers around the Quad Block ozone cell—a patented, modular system redefining ozone production through innovation, precision, and durability.

Rather drink sewage water than LA tap water any day.

New sensor offers continuous monitoring, immediate detection of lead.

EPA Administrator Gina McCarthy speaks at the 40th Anniversary of the Safe Drinking Water Act (SDWA) on December 9, 2014 at the National Press Club in Washington, D.C.

In the water-scarce desert Southwest, the agricultural, urban and environmental sectors are constantly competing for limited water. So how do you handle the fact that each stakeholder within those sectors wants something different in a water management strategy, for now and for the future?

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.