DRINKING WATER
The Power Of Ductile Iron Pipe: A Solution For Every Application
Ductile iron pipe is a versatile, reliable solution that resists UV degradation, freezing, and physical stress. Its unmatched durability ensures long-term performance in any piping application.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Membrane Filtration Water Treatment Plant Meets Hotel Complex's Needs
The Little America West Hotel complex located near the town of Granger, Wyoming, used an outdated surface water treatment plant that provided poor quality water during storm events.
-
Private Side Inventorying: Tackling The LCRR Challenge
With the revised Lead and Copper Rule calling for a full Lead Service Line Inventory by October of 2024, water professionals must begin a massive-scale project. No part of the challenge is more daunting than collecting information on private-side service lines–and systems across the nation have a long road ahead of them to get the data needed to succeed in this project.
-
Shifting To Cellular Solutions Underpins Long-Term Resiliency And Stability
System longevity is a growing concern for water utilities of all sizes and locations. One of the biggest obstacles in achieving this goal is the use of advanced metering infrastructure (AMI) that leverages fixed network communications. Not only do fixed networks require significant expertise to build and manage, but a shrinking workforce is also making it difficult to replace institutional knowledge when those experts retire. Additionally, emerging cybersecurity threats are making fixed networks a heavy load for utilities to bear.
-
How A Combo Utility Benefits From AMI
With both water and power customers to serve, the City of Dothan, Alabama needed an advanced metering infrastructure (AMI) solution that could work as well with 35,000 water meters located in pits as it did with 31,000 electric meters wired to homes.
-
Using Ozonation And Biologically Active Filtration To Remove Micropollutants
Ozonation and biologically active filtration (O3-BAF) is being increasingly used to address the issue of organic micropollutants (OMPs) in wastewater treatment and potable reuse.
-
Sensus Technology Helps California Utility Improve Efficiency Through The Pandemic And Beyond
The Eastern Municipal Water District used a smart utility network from Sensus to advance service and sustainability.
-
Drinking Water Treatment Plant (DWTP) Filtration System For Arsenic Removal
The existing water treatment at the Toquepala Mine in Peru included only chemical disinfection to provide the local population with water only for non-potable purposes. An alternative solution was essential.
-
Who Turned Up The Heat? What You Need To Know About Biofilms And Heat Transfer
Whether you work at an oil refinery, power plant, or in an office building, chances are you owe your comfort to a cooling tower.
-
Advancing The Potential For Stormwater Reuse: Investigation Of Water Quality And Treatment
Managing stormwater runoff is a complex environmental challenge for communities across the country. As stormwater runoff flows into nearby waterways, it can collect various pollutants including trash, chemicals, oils, and dirt, which can lead to environmental and public health impacts.
-
Promising Solar Technology Would Expand Drinking Water Access
Several advancements in solar technology may provide the answer to drinking water production in distressed regions of the world.
DRINKING WATER APPLICATION NOTES
-
The Basics: Testing RO Quality4/28/2014
Osmosis is the phenomenon of lower dissolved solids in water passing through a semi-permeable membrane into higher dissolved solids water until a near equilibrium is reached.
-
Phosphate In Groundwater And Surface Water: A Rapid And Reliable Determination Method Using The Photometric Spectroquant® Test1/31/2019
Phosphorus is an essential element for organisms and plants. In natural, uncontaminated waters, it occurs as organically bound phosphate, condensed phosphates or as orthophosphate — often referred to by its chemical formula PO4-P. The small quantity of phosphorus present in natural waters does not promote the growth of plants. However, a rise in the concentration of phosphorus results in the proliferation of algae, which leads to the eutrophication of the water body.
-
Cloth Media Filtration Removes Coal Ash And Coal Fines At Power Plants1/15/2019
Coal-fired power plants generate coal fines and coal ash from a number of sources, including coal combustion residuals (CCR), particularly fly and bottom ash from coal furnaces, and coal pile runoff during rain events. In support of an industry-wide effort to reduce, improve, and remove coal ash ponds, a variety of technologies have been tested and employed. Read the full application note to learn more.
-
Solution For Algae Blooms12/17/2015
Harmsco® Filtration Products is pleased to offer a solution to the ever increasing blue-algae blooms in water sources. A multi-barrier approach is necessary to physically remove intact (algae and cyanobacteria) before they rupture in the treatment process and then remove extracellular cyanobacteria through adsorption.
-
Drinking Water Testing By Ion Chromatography Using Ultrapure Water9/29/2022
This application note demonstrates the suitability of ultrapure water produced by a Milli-Q IQ 7000 water purification system for the IC analyses of inorganic ions and DBPs in drinking water.
-
Waterworks Joints 10110/30/2025
There are many different joints that can be found on waterworks pipeline components. This paper focuses on the three most common joints.
-
Improved Efficiencies In TOC Wastewater Analysis For Standard Method 5310B And EPA Method 41510/16/2014Total organic carbon (TOC) measurement is of vital importance to the operation of water treatment due to organic compounds comprising a large group of water pollutants. TOC has been around for many years, and although it is a relatively simple analysis in theory, operational efficiency is paramount.
-
Aquafine Ultraviolet Treatment Systems For TOC Reduction1/29/2025
Aquafine TOC reduction units coupled with ion exchange systems or EDI will oxidize trace organics into smaller ionic species, carbon dioxide and water, which are more readily removed by ion exchange resins, EDI, and/or degasifiers.
-
Determination Of Polycyclic Aromatic Hydrocarbons In Seafood4/20/2015
Polycyclic Aromatic Hydrocarbons (PAHs) are a large group of organic compounds found naturally in the environment. PAHs are monitored by the US Environmental Protection Agency due to their carcinogenic characteristics.
-
Reducing And Reusing Water In Steel Manufacturing2/28/2022
The art of manufacturing steel for industries is well over 100 years old. Within this time, the steel business has fulfilled consumer needs, including construction, transportation, and manufacturing. The steel manufacturing process is quite intensive as it requires a lot of water to cool down the application. Steel plants constantly look for strategies that can help sustain the steel for a longer time by efficiently improving water and energy consumption.
LATEST INSIGHTS ON DRINKING WATER
-
Every year on November 19, Water Mission observes World Toilet Day — a day designated by the United Nations to focus on the importance of safe sanitation for all.
-
Global Water Outcomes expert notes that “water utilities are facing unprecedented challenges and opportunities,” citing the role of digital solutions moving forward.
-
In this Q&A, Dr. Elke Süss of Metrohm addresses the urgent need for haloacetic acid testing in response to “one of the most significant updates to EU drinking water monitoring in recent years.”
-
Amazon and Xylem partner to tackle Mexico’s leaking water systems as the country balances water scarcity and a growing tech sector.
-
Water scarcity is increasingly impacting sectors from agriculture and energy to urban planning and high-tech manufacturing. Recently, industry leaders gathered to explore how new technologies and complex industrial demands are forcing a fundamental rethinking of water infrastructure.
-
Nobel-winning molecular materials are poised to reinvent purification, desalination, and reuse.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.