DRINKING WATER
Custom Tank Designs That Actively Manage PFAS Mass Transfer Zone (MTZ) — And Why It Matters More Than Ever
As utilities prepare for the pending 4-ppt PFAS drinking water MCL, many are discovering that legacy lead/lag designs—workhorses for decades when treating contaminants in the ppm and ppb range—simply are not optimized for the parts per trillion-level (ppt) precision PFAS demands.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Digital Transformation In Water: The 9 Key Success Factors
Climate change, urban population growth, aging infrastructure, budgetary constraints and increasing regulatory pressure are some of the many challenges facing US water utilities.
-
When And Where To Use Piping Restraints
Read about standards to follow and techniques to apply for restraining pipe connections in specific conditions and environments.
-
How To Squeeze Money Out Of Your Water Meters
There are many types of water meters being used across the U.S. to measure water consumption. And even though the panacea for a water utility would be to equip each residence with the same meter — standardizing metering technique, data capture and maintenance — the reality is that a utility needs to be able to read and service the variety of meters that make up its metering portfolio.
-
Sensus Technology Helps California Utility Improve Efficiency Through The Pandemic And Beyond
The Eastern Municipal Water District used a smart utility network from Sensus to advance service and sustainability.
-
10 Reasons You Should Switch From Mechanical To Solid-State Meters
Driven by cutting-edge sensor technology and data analytics, solid-state meters offer numerous benefits too compelling to ignore.
-
Weather Or Not: AMI That Stays Connected
As emerging weather patterns that cause significant damage and disruption across populated areas have become more common and show no signs of slowing down, many water utilities are improving resiliency in order to properly serve their communities and meet newer regulatory requirements.
-
Key Indicators Of Tube Settler Strength: Module Design And Construction
There is a common misconception about tube settlers that thicker material, whether it’s thermoformed or extruded, yields a stronger, more structurally capable module. On the surface, this seems like a reasonable assumption. However, when we look at the details of module design and construction, we see that this is not always true.
-
Portable Parallel Analysis: Streamlining Distribution System Water Testing
A Water Quality Specialist used the Hach SL1000 Parallel Portable Analyzer (PPA) to test 6 parameters simultaneously – all within about 8 minutes. Previously, the procedure took 20 minutes just for one parameter.
-
Ultrasonic And Radar Level Technologies: Bringing Clarity To The Water And Wastewater Market
If your head spins after reading how amazing one level measurement technology is in comparison to another, understanding the key attributes of these technologies and their applicability to specific processes may help to clear the waters.
-
A More Cost-Effective Tool For Oxygen Injection Flow Measurement
Variable area (VA) flow meters offer an economical solution in many hazardous wastewater applications, as well as a variety of other uses, but are often overlooked by engineers and plant operators who think a higher level of flow measurement technology is necessary.
DRINKING WATER APPLICATION NOTES
-
Ion Exchange Resins Reduce Pollution From Refineries12/23/2013
A single operational oil and gas refinery produces millions of gallons of contaminated wastewater a year, leading to environmental pollution concerns. Ion exchange resins are a metal- and ion-removal solution to help clean this wastewater for plant reuse or safe disposal. This application guide explains how resins can be used to demineralize refinery water in process, boiler, and cooling water applications.
-
Determination Of Pesticide Residues In Honey, By An Automated QuEChERS Solution9/17/2014
The QuEChERS (Quick-Easy-Cheap-Effective-Rugged-Safe) sample extraction method was developed for the determination of pesticide residues in agricultural commodities.
-
Harmonics Reduction Methods4/17/2017
There are several basic methods for reducing harmonic voltage and current distortion from nonlinear distribution loads such as adjustable frequency drives (AFDs). Following is a description of each method, along with each method’s advantages and disadvantages.
-
Ultrapure Water For Determination of Toxic Elements In Environmental Analyses4/10/2018
In this paper the importance of reagent water quality for toxic element environmental analyses is discussed, and the suitability of fresh ultrapure water produced using MilliporeSigma water purification systems for ICP-OES and ICP-MS trace element analyses in environmental laboratories is demonstrated.
-
'TOTEX' Is Key When Purchasing Instrumentation4/29/2021
There’s a lot to be considered in the price tag of an ultrasonic instrument. Derek Moore from Siemens explains how the historical way of thinking only of capital costs needs to change to the more holistic approach of total expenditures.
-
LC-MS Analysis Of PFAS Compounds In EPA Methods 537.1, 533 And 832711/4/2021
The Ascentis Express PFAS HPLC column is designed for the separation of novel and legacy PFAS as per recent EPA methods. A specific PFAS delay column prevents background PFAS contamination from interfering with sample results in quantitative LC-MS methods.
-
Application Note: YSI Water Quality Monitoring Buoys Help Connecticut DOT Protect The Housatonic River12/27/2005When replacement of the Sikorski Bridge spanning the Housatonic River was authorized, Paul Corrente and the Connecticut Department of Transportation (CT-DOT) set about the design and development of a water quality monitoring program to monitor the contractor’s in-water activities to insure full protection of the river from perturbation
-
How To Read An Encoder9/13/2013
The HR-E LCD encoder has a 9-digit Liquid Crystal Display (LCD) to show consumption, flow and alarm information. The display automatically toggles between 9-digit and 6-digit consumption, rate of flow and meter model.
-
Application Note: Desalination Plants: YSI Instruments Monitor Flow & Water Quality At Multiple Stages2/3/2011Desalination is the process of removing salt from sea water or brackish river or groundwater to make potable water. By YSI
-
Ion Exchange Resins And Activated Carbons For Better-Tasting Water12/18/2013
For many, access to good-tasting tap water is limited, and buying bottled water can be expensive. Simple pour-through jug filters offer a low-cost and effective alternative. Activated carbons, in conjunction with ion exchange products, produce drinking water that is absent of all industrial pesticides and contaminants.
LATEST INSIGHTS ON DRINKING WATER
-
Beaverton Water Division’s transition to Kamstrup AMI and acoustic leak detection is modernizing meter reading, reducing infrastructure costs, improving leak identification, and streamlining operations as deployment progresses.
-
Learn how the Mustang Bayou Service Area (MBSA) Water System Improvements project delivered a fast-tracked, multi-phase response to rapid development and critical capacity challenges in one of the Missouri City’s fastest-growing regions.
-
As water systems grow more complex and climate patterns shift, Legionella is emerging as one of the most persistent and underestimated risks in the built environment. The threat to public health from Legionnaires' disease will likely further escalate unless decisive action is taken.
-
The city of Jackson faced a water crisis that went beyond the tap. What began as an ambitious plan to modernize its water metering infrastructure in 2014 became a logistical and financial nightmare, costing the city millions in lost revenue and declining public trust. Metering as a Service (MaaS) offered the city an alternative option.
-
There has been an abundance of funding available to address the estimated 9.2 million lead service lines currently deliver drinking water to homes, businesses, schools, and unsuspecting citizens throughout the United States. So it is disheartening to realize that millions of lead water lines are still delivering water to citizens.
-
This Q&A follows the Webinar: Beaverton's New AMI Solution Checks Every Box: Operations, Billing, Service, & Savings hosted by Water Online on October 21, 2025. The webinar featured the leadership team from Beaverton Water Division as they discussed lessons learned across operations, billing, and customer service, offering a 360-degree perspective on implementing and managing an AMI system.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.