DRINKING WATER
This Is The Water Meter Empowering Utilities To Build Resilient Water Networks
Advanced residential meters now deliver real-time insight and remote flow control, helping utilities respond faster to leaks, weather events, and operational challenges while strengthening long-term network resilience.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Clarification And Filtration Upgrades Using ACTIFLO Technology
The City of Somersworth has a historical background dating back to the early 1900s when it became the first community to start using chlorine to disinfect it’s drinking water.
-
Mueller Has You Covered For Domestic Products
Since 1857, Mueller Water Products have been helping municipalities increase operational efficiencies, improve customer service and prioritize capital spending. Throughout this time Mueller has played an essential role in the research, development and manufacturing of products and services used in water systems across North America.
-
EPA Researchers Develop Tool To Assess Onsite Non-Potable Water Reuse For Buildings Across The U.S.
Increasing pressure on water resources has led to greater water scarcity and a growing demand for enough clean water. Many communities across the country have initiated, or are in the process of developing, centralized systems for planned water reuse. Water reuse is the concept of intentionally recycling, treating, and reusing alternative water sources. Federal government agencies and the water user community are coordinating their efforts to advance the adoption of water reuse and ensure the security, sustainability, and resilience of water resources. The National Water Reuse Action Plan (WRAP) describes these collaborative actions.
-
Understanding Ultrapure Water, Difficulties With pH Measurement
By gaining insights into the diverse types of pH measuring analyzers and sensors, companies can make informed decisions to enhance their UPW management strategies and drive operational excellence.
-
Protecting The Environment With Environmental Remediation
Environmental remediation involves the removal of pollutants to protect human health and restore ecosystems. Learn more about the various techniques used, and how to ensure these projects are handled professionally.
-
A Decade Of Smart Water Success — The Eastern Band Of The Cherokee Indians
What began as a mandate to reduce water loss has grown into a model of smart water management for the Eastern Band of the Cherokee Indians (EBCI). Since deploying Kamstrup’s ultrasonic meters in 2016, the utility has transitioned from crisis response to innovation leadership—proving that even the most rugged terrain can support advanced metering infrastructure (AMI).
-
Enhancing Leak Detection With Remote Pressure Monitoring
Remote pressure monitoring is increasingly being implemented by progressive water utilities, both large and small, to get better visibility into their distribution systems. This results in lower operating costs and reduced stress on their aging pipe networks.
-
California Dreamin'? Pilot Study Makes Treating Arsenic, Manganese And Iron A Reality (Loprest)
A pilot study was conducted for arsenic, manganese, and iron treatment system at a well site. The onsite pilot test demonstrated the performance of the Loprest Water Treatment Company treatment process.
-
Bulk Emergency Chlorine Vapor Scrubber System Restored For Oklahoma City
As a bulk emergency chlorine vapor scrubber system approached the end of its anticipated 20-year useful life, the city engaged Integrity Municipal Systems, LLC (IMS) inspected the equipment and proposed a system refurbishment plan that would ensure proper system performance and safe storage of the 30,000 gallons of corrosive caustic soda contained within it.
-
How To Filter Iron & Manganese From Well Water With Manganese Dioxide Filter Media
There are various treatment processes that are used to remove iron and manganese from ground water for potable water supplies. Iron and manganese are typically found in groundwater in a dissolved state and the water may appear clear. While there are various less common treatment methods used (such as ion exchange), most treatment systems for iron and manganese oxidize the ferrous state (clear iron) to a ferric state so the solid particles can then be filtered out.
DRINKING WATER APPLICATION NOTES
-
Determination Of Hexanal In Foods Utilizing Dynamic Headspace4/9/2015
Hexanal is one of many well-documented aromatic components that contribute to flavor and aroma in common consumer food products containing omega-6 fatty acids. Hexanal content is also used to measure the oxidative status of foods rich in omega-6 fatty acids.
-
Determination Of Polar Pesticide Residues In Food Of Plant Origin, By And Automate QuPPe Solution9/29/2014
The QuEChERS (Quick-Easy-Cheap-Effective-Rugged-Safe) sample extraction method was developed for the determination of pesticide residues in agricultural commodities.
-
Application Note: Using Real-Time Telemetry For Ecological Monitoring Of Coastal Wetlands2/3/2011The Grand Bay National Estuarine Research Reserve (NERR)in Mississippi is one of 27 protected estuarine reserves across the United States. By YSI
-
Application Note: Turbidity Monitoring In Drinking Water Treatment Plants8/30/2005
Turbidity, or the relative clarity of a liquid (in this case drinking water), is caused by the presence of microscopic particles such as clay, silt, or other fine undissolved matter
-
Determination Of Pesticide Residue In Vegetables9/10/2014
QuEChERS is a Quick-Easy-Cheap-Effective-Rugged-Safe extraction method that has been developed for the determination of pesticide residues in agricultural commodities.
-
Flow Meter Enhances Chlorination System Performance For Municipal Water Department12/12/2017
The water municipality at a mid-size city in the Western region of the U.S. serving a population of about 180,000 people needed to address a chlorine disinfection system problem at one of its water treatment plants.
-
Water Treatment In Boilers And Cooling Towers10/29/2021
Most people recognize problems associated with corrosion. Effects from scale deposits, however, are equally important. For example, as little as 1/8" of scale can reduce the efficiency of a boiler by 18% or a cooling tower heat exchanger by 40%!
-
Analyzing Total Organic Carbon In Sea Water4/2/2015
The analysis of Total Organic Carbon (TOC) in seawater can be both challenging and expensive. The concentration of organic carbon in seawater is of considerable interest. The effect this matrix can have on TOC analyzers can lead to rapid consumable turnover, costly maintenance and repairs.
-
Oxidation Reduction Potential10/29/2021
What is ORP? Oxidation Reduction Potential or Redox is the activity or strength of oxidizers and reducers in relation to their concentration. Oxidizers accept electrons, reducers lose electrons. Examples of oxidizers are: chlorine, hydrogen peroxide, bromine, ozone, and chlorine dioxide. Examples of reducers are sodium sulfite, sodium bisulfate and hydrogen sulfide. Like acidity and alkalinity, the increase of one is at the expense of the other.
-
What Are You Doing To My Pipe: Can PVC Pipe Be Loaded?4/13/2021
The argument has been used that PVC pipe is delicate and can’t be subjected to any kind of loading. In EBAA's years of testing we have found that is not the case at all. PVC can take an extreme amount of strain.
LATEST INSIGHTS ON DRINKING WATER
-
People around the globe are trying to figure out how to save, conserve, and reuse water in a variety of ways, including reusing treated sewage wastewater and removing valuable salts from seawater. But for all the clean water they may produce, those processes leave behind a type of liquid called brine. I’m working on getting the water out of that potential source, too.
-
Restoring eelgrass beds is critical because they provide habitat for many kinds of marine life, improve water quality by filtering out pollution, and the plant’s root system stabilizes the sediment on the seafloor, protecting shorelines from erosion.
-
No matter where you live in the U.S., you have likely seen headlines about PFAS being detected in everything from drinking water to fish to milk to human bodies. Now, PFAS are posing a threat to the Great Lakes, one of America’s most vital water resources.
-
When people think about agricultural pollution, they often picture what is easy to see: fertilizer spreaders crossing fields or muddy runoff after a heavy storm. However, a much more significant threat is quietly and invisibly building in the ground.
-
As water systems become more circular and complex, understanding and managing the subsurface — the hidden half of the water cycle — is becoming a critical enabler of resilience. This article explores the key trends shaping this new reality, from tackling “forever chemicals” to the water strategies redefining heavy industry.
-
The White House has finalized plans to roll back rules under the National Environmental Policy Act (NEPA), narrowing its focus and limiting what the current administration claims are needless delays for federal approval of water, energy, and other infrastructure plans. For water and wastewater utilities, the changes could speed up permitting for critical projects, although experts warn the tradeoffs could do more harm than good.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.