DRINKING WATER

GettyImages-2188554976_450_300 Why Planning Is The Hero Of AMI Deployment

Thorough planning, accurate data, and strong communication are the keys to successful AMI deployments, preventing costly disruptions and ensuring technology delivers long-term operational and customer service value.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

  • Optimization Of Water Treatment Using Zeta Potential
    5/27/2020

    Drinking water in the US and developed nations of the world is treated to remove contamination of foreign materials, both mineral and organic.

  • TOC Analysis: The Best Tool In A Drinking Water Facility's Toolbox
    5/3/2019

    SUEZ Water Technologies & Solutions designs and manufactures Sievers Total Organic Carbon (TOC) Analyzers that enable near real-time reporting of organic carbon levels for treatment optimization, quality control & regulatory compliance. TOC has a wide range of applicability at a drinking water plant, and therefore any drinking water utility — large or small — can measure TOC in their laboratory or online in their treatment process.

  • How To Install A Submersible Pump In Discharge Tubes
    11/28/2012

    In the fields of water and waste water technology, submersible pumps represent a viable economic and technical alternative to conventional, dry-installed pumps. In particular, they offer a number of handling advantages during maintenance and installation work.

  • The Basics: Keeping Our Water Clean Requires Monitoring
    4/30/2014

    Keeping the water in our lakes, rivers, and streams clean requires monitoring of water quality at many points as it gradually makes its way from its source to our oceans. Over the years ever increasing environmental concerns and regulations have heightened the need for increased diligence and tighter restrictions on wastewater quality.

  • Simplify And Optimize Your Process With Level And Pump Control
    3/1/2022

    Level controllers have evolved to meet today’s environmental challenges and industry demands. Learn how they support improved process management and, ultimately, a better bottom line.

  • Analysis Of Pesticide Residue In Spinach Using The AutoMate-Q40 An Automated QuEChERS Solution
    10/16/2014

    QuEChERS is a Quick-Easy-Cheap-Effective-Rugged-Safe extraction method that has been developed for the determination of pesticide residues in agricultural commodities.

  • The Active Control Program For Advanced UV Oxidation
    12/1/2025

    This application note will explore how active control programs lower operational costs of compliant contaminant removal. 

  • Phosphate In Groundwater And Surface Water: A Rapid And Reliable Determination Method Using The Photometric Spectroquant® Test
    1/31/2019

    Phosphorus is an essential element for organisms and plants. In natural, uncontaminated waters, it occurs as organically bound phosphate, condensed phosphates or as orthophosphate — often referred to by its chemical formula PO4-P. The small quantity of phosphorus present in natural waters does not promote the growth of plants. However, a rise in the concentration of phosphorus results in the proliferation of algae, which leads to the eutrophication of the water body.

  • Activated Carbon And Adsorption Of Trichloroethylene (TCE) And Tetrachloroethylene (PCE)
    12/30/2013

    Trichloroethylene (TCE) and Tetrachloroethylene (PCE) are two of the most common solvents that contaminate groundwater supplies in the United States. Both solvents see frequent use in the extraction of fat, in the textile industry, in the production of various pharmaceutical and chemical products. TCE is also used as a degreaser from fabricated metal parts, and PCE serves as a component of aerosol dry-cleaning solvents.

  • Why Should We Care About NSF/ANSI 61 Certification?
    3/17/2021

    According to National Sanitation Foundation (NSF) and the American National Standards Institute (ANSI), it's a set of standards relating to water treatment and establishes criteria for the control of equipment that comes in contact with either potable water or products that support the production of water.

DRINKING WATER PRODUCTS

Today, pressure measurement technology is often used for measuring liquids, pastes and gases. With a wide range of sensor technology Endress+Hauser offer instruments with perfect fit for any kind of application.

Every drop costs you money The estimated cost associated with produced water treatment in the United States is approximately $18B. The cost of cleaning produced water is 300 times greater than municipal waste water and 3,000 times greater than irrigation water.

The OPTIFLUX 2300 is an electromagnetic flowmeter (EMF) for all demanding applications with water and wastewater. The high-end meter is particularly suitable for applications requiring high accuracy and extensive diagnostics.

The Aquana AVS AMI-Ready Valve is an IP68 rated remote disconnect ball valve designed to integrate with any existing AMI platform.

The Series 1900 is designed for restraining push-on bell and spigot AWWA C909 PVC Pipe. The harness consists of two split serrated restraints one on the spigot end and another behind the bell harnessed together by an array of thrust rods. The Restraint harness is rated to the full pressure of the pipe.

Welcome to our award-winning MDM software, Harmony Encore. We took our best-in-class Harmony MDM software and completely reenvisioned every aspect including its design, interoperability, user experience (UX), and speed to bring North American utilities an entirely new solution experience that solves today’s most pressing utility challenges and those of tomorrow.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

Lead poisoning water service lines are turning up around the globe at an alarming rate leaving millions angry. ePIPE's innovative technology creates a new pipe barrier inside the service lines eliminating water contact with the lead service lines.

On Wednesday, November 19, 2014, at 10:15 a.m. in 2322 Rayburn House Office Building, the Subcommittee on Environment and the Economy will hold a hearing entitled “Cyanotoxins in Drinking Water."

KC Water is strategically and systematically replacing old water mains. Those in the most need get replaced first.

Scientists are developing robots that might someday be able to creep through the pitch-black mines to help prevent spills. A 2015 spill from Colorado’s Gold King Mine unleashed 3 million gallons of water that fouled rivers in three states with toxins.

Did you know satellites can measure Earth’s oceans from space? The Jason-3 satellite, set to launch in July 2015, will collect critical sea surface height data, adding to a satellite data record going back to 1992.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.