DRINKING WATER
Why Planning Is The Hero Of AMI Deployment
Thorough planning, accurate data, and strong communication are the keys to successful AMI deployments, preventing costly disruptions and ensuring technology delivers long-term operational and customer service value.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Tri-City Water Infrastructure Partnership: When 'We' Is Better Than 'Me'
This is a story about three cities in North Carolina: Albemarle, Concord and Kannapolis. Albemarle, 40 miles east of Charlotte, had excess capacity in its water system and needed new customers to defray costs.
-
What You Need To Know About The 3 Types Of Iron Filter Media
Several treatment processes can be used to remove iron and manganese from ground water for potable water supplies. Iron and manganese are typically found in groundwater in a dissolved state and appear clear. While there are various less common treatment methods used (such as ion exchange and ultra-filtration), most treatment systems for iron and manganese oxidize the ferrous state of iron to a ferric state so the solid particles can then be filtered out.
-
New Technology Is 'Groundbreaking Advancement' In Corrosion Control
V-Bio Polyethylene Encasement is the latest scientific advancement in corrosion control for ductile iron pipe. Its revolutionary formulation allows for complete confidence on the part of the owner, engineer and municipality that no matter how aggressive the soils, the rugged iron pipe installed will last for generations. This new technology builds on more than 50 years of research and development by the Ductile Iron Pipe Research Association. By Jordan Byrd, AMERICAN Ductile Iron Pipe
-
Insta-Valve 20-24 Isolates Potentially Dangerous Leak Under Railroad Tracks
Hydra-Stop’s solution stopped a potentially dangerous leak without disrupting service to nearby factories or businesses.
-
Leveling Up AMI Operations
To take AMI to the next level, water utilities need a solution that allows users to build their own reports and analyses using business intelligence tools.
-
Drinking Water Treatment: Tianjin, China
Favorable reviews of UV technology in wastewater applications influenced Tianjin Economic Development Area (TEDA) Water Supply General Company to investigate the potential of using UV for drinking water applications at one of its water treatment plants.
-
Weather Or Not: AMI That Stays Connected
As emerging weather patterns that cause significant damage and disruption across populated areas have become more common and show no signs of slowing down, many water utilities are improving resiliency in order to properly serve their communities and meet newer regulatory requirements.
-
Disinfection Technologies: How Do You Make the Right Choice?
The right disinfection technology is crucial for meeting regulatory standards and ensuring safety. This article compares the pros and cons of chlorine, peracetic acid (PAA), ozone, and UV disinfection.
-
PFOA/PFOS Stormwater Treatment
Following several years of piloting ion exchange resin for the removal of perfluorinated compounds, CKS Engineers needed to design and construct a full-scale system to treat the former military base stormwater runoff before entering Neshaminy Creek.
-
Using Ozone In Advanced Oxidation
The advanced oxidation process removes contaminants in water and wastewater by oxidation through reactions with highly reactive hydroxyl radicals (.OH). This chemical process uses ozone (O3), hydrogen peroxide (H2O2), and/or UV light.
DRINKING WATER APPLICATION NOTES
-
Remote Monitoring And Maintenance Through Digitalization3/17/2020
Siemens offers to our customers the ability to make both process measurements, and to remotely monitor the activity and health of instrumentation, whether you have a SCADA, PLC or DCS system, or not. By utilizing Siemens’ ability to offer unparalleled flow, level, pressure, temperature, and weight measurement we can provide a broad range of process measurements and offer unequaled monitoring of the health and performance of those products.
-
Determination Of Hexanal In Foods Utilizing Dynamic Headspace4/9/2015
Hexanal is one of many well-documented aromatic components that contribute to flavor and aroma in common consumer food products containing omega-6 fatty acids. Hexanal content is also used to measure the oxidative status of foods rich in omega-6 fatty acids.
-
Irrigation Technology In Agriculture: How New Technologies Overcome Challenges1/29/2019
As the world’s population continues to increase at a fast pace, more food and water will be needed to sustain humanity. In the past 50 years, we have tripled our need for water and food, and there are no signs of this trend slowing down. As a result of these conditions, smart, innovative agricultural practices are needed now more than ever. Technology can, and already does, aid agriculture in innumerable ways. One prominent part of agriculture that can use technological innovation to increase efficiency and effectiveness is irrigation.
-
Application Note: Busseron Creek Watershed Partnership Addresses Concerns In A Rural Watershed1/20/2010As with other watershed organizations, the Busseron Creek Watershed Partnership (BCWP) exists because of surface water quality degradation. In this case, those waters drain 163,231 acres of a watershed that crosses the boundaries of Vigo, Clay, Green, and Sullivan counties in West- Central Indiana. By YSI
-
SensyMaster Thermal Mass Flowmeter8/3/2021
SensyMaster helps to improve the operating costs of the most cost intensive process in sewage plants: Aeration. High-measuring performance and state of the art technology helps customers increase plant efficiency.
-
Removal Of Chloramines With Activated Carbon12/30/2013
In order to reduce the formation of harmful disinfection byproducts in drinking water, alternative disinfectant use has become increasingly widespread. Monochloramine is a leading alternative disinfectant that offers advantages for municipal water. This tech brief details the removal of monochloramine using activated carbon.
-
Complete Flow Solutions11/11/2024
Siemens’ extensive portfolio includes various flow measurement technologies, such as Coriolis, clamp-on ultrasonic, vortex, and differential pressure meters, catering to a wide range of industrial needs.
-
Application Note: Miami Conservancy District Uses Nitrate Screening As Conjunctive Management Tool1/20/2010Tasked with monitoring a watershed covering nearly 4,000 square miles, almost 2,300 miles of rivers and streams, and a huge aquifer that provides drinking water for more than 1.2 million people, water quality monitoring specialists at the Miami Conservancy District (MCD) in Dayton, Ohio, have their hands full. By YSI
-
Secret To Disinfection Monitoring For High Chlorine Residual Wastewater Applications8/2/2015
Some wastewater applications require chlorine residuals greater than can be effectively monitored using DPD due to the oxidation of the Wurster dye to a colorless Imine. Such applications include industrial wastewater processes that inherently have a high chlorine demand thereby requiring a more robust monitoring method.
-
Protecting Pumps From Dead Head Conditions4/6/2017
The C445 motor management relay offers the most configurable protection options in the industry, with features specifically designed to protect critical pumps from costly damages due to dead-head and other underloaded or starved pump conditions.
LATEST INSIGHTS ON DRINKING WATER
-
Setting Global Standards: Inside North America's Only Full-Scale UV Disinfection Validation Facility
Portland's industry-leading facility reaches 100 reactor validations in 23 years.
-
Given the maturation of sensor technology, the scientific and operational hurdles to portable lead analysis are somewhat surprising — but surmountable.
-
Bathymetric modeling maps underwater terrain. It also helps guide planning, prevent hazards, and build climate-resilient infrastructure.
-
The data center industry stands at a critical juncture. As facilities scale to meet exponential computing demands, water consumption has emerged as a defining operational challenge. Traditional approaches focused on water efficiency are no longer sufficient.
-
When pregnant women drink water that comes from wells downstream of sites contaminated with PFAS, known as “forever chemicals,” the risks to their babies’ health substantially increase, a new study found. These risks include the chance of low birth weight, preterm birth, and infant mortality.
-
Beaverton Water Division’s transition to Kamstrup AMI and acoustic leak detection is modernizing meter reading, reducing infrastructure costs, improving leak identification, and streamlining operations as deployment progresses.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.