DRINKING WATER
AMERICAN And Partners Install Boltless Restrained Underwater Pipeline System In Ashland, Wisconsin
Beneath the waters of Chequamegon Bay on Lake Superior in Ashland, Wisconsin, about 4,500 feet of 24-inch AMERICAN Flex-Ring Ductile Iron Pipe and a submerged timber crib intake structure were installed to ensure the city’s residents have quality drinking water for the next 100 years. The Ashland Water Intake Project began May 1, 2025, and is now complete.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
EPA Researchers Partner With The Minnesota Department of Health To Screen For Chemicals Of Health Concern In Water
There are many different chemicals that are released into our environment, and the ability to characterize human exposure and risk of every one of those chemicals is limited. Because information about these chemicals and their sources is limited, it’s difficult to know which chemicals are of highest concern, and regulatory agencies struggle to determine where they should focus efforts.
-
Project Profile: Meadow Lake MHC White Lake, MI 750 GPM Iron & Manganese System
In February 2008 AdEdge Technologies, Inc. was selected as the sole vendor by Sun Communities, a nation wide owner and operator of Mobile Home Communities, to supply an iron and manganese treatment system, for the Meadow Lake MHC in White Lake, Michigan. By Adedge Technologies Inc.
-
The Insta-Valve 250 Puts A Stop To A Month-Long Water Loss Of 150 GPM
Hydra-Stop’s solution allowed a targeted shutdown to stop a massive and costly water loss.
-
Understanding The Limit Of Detection
Accurate low-level turbidity monitoring requires a deep understanding of detection limits and the variables affecting measurement sensitivity. Learn how refined laboratory techniques and standardized spiking protocols ensure precision in demanding water treatment applications.
-
Are Your Customers Turning Up Their Noses At Your Drinking Water?
There have been a number of surveys on water-utility customer satisfaction over the past few decades and, unfortunately, the news tends to be less encouraging than it should be. Is it safe to chalk up those responses to personal tastes or preferences, or is it time to do something about turning them around before it’s too late? Here are some resources to consider.
-
The Value Is In The Journey: How Mustang Special Utility District Is Transitioning To Smart Water
Discover how Mustang SUD implemented smart water technology, replacing drive-by meters with a cellular AMI system. This switch improved operational efficiency and customer satisfaction.
-
Specifying Performance Over Equipment Quickly Reduces THMs In The Colorado Springs' Distribution System
Colorado Springs, Colorado, enjoys some of the highest quality drinking water in the country, with most of its water coming from high country snowmelt. Despite its pristine origin in the mountains, the water at the far end of the distribution system is prone to developing trihalomethanes (THMs) due to low turnover and high water age.
-
AltaPac™ AP-II Ultrafiltration Membrane Case Study
Cibola is a small community located in Southern Arizona along the Colorado River. With a growing population, the community decided to install a centralized water system to replace individual wells.
-
16 Years Of The Octave: A Legacy Of Leadership In Ultrasonic Water Measurement
The Octave Ultrasonic Meter is celebrating 16 years of trusted service, and it’s more than a product milestone. It’s a recognition of the thousands of utilities that have embraced smart water management and chosen a path of long-term value.
-
The Impact Of Build America, Buy America Act On Emergency Pipe Repair
The Build America, Buy America Act (BABAA) has completely overwhelmed domestic suppliers. Thankfully, there are steps that utilities can take to mitigate the delays and increased costs.
DRINKING WATER APPLICATION NOTES
-
Remote Monitoring And Maintenance Through Digitalization3/17/2020
Siemens offers to our customers the ability to make both process measurements, and to remotely monitor the activity and health of instrumentation, whether you have a SCADA, PLC or DCS system, or not. By utilizing Siemens’ ability to offer unparalleled flow, level, pressure, temperature, and weight measurement we can provide a broad range of process measurements and offer unequaled monitoring of the health and performance of those products.
-
Analysis Of Pesticide Residue In Spinach Using The AutoMate-Q40 An Automated QuEChERS Solution10/16/2014
QuEChERS is a Quick-Easy-Cheap-Effective-Rugged-Safe extraction method that has been developed for the determination of pesticide residues in agricultural commodities.
-
Advances In Paper-Based Devices For Water Quality Analysis2/22/2017
Water quality test strips have been around for decades. They are usually constructed from a porous media, including different types of paper, and undergo a color change when dipped into water containing the analyte of interest. These test strips have seen application in swimming pools, aquariums, hot tubs, remediation sites, and other commercial/environmental areas.
-
Lab Gas Sub-Metering Accuracy Improves With Thermal Flow Meters To Save Money12/1/2017
Facility administrators will find the advanced ST100 Series Thermal Mass Air/Gas Flow Meter from Fluid Components International (FCI) helps them improve the accuracy of specialty gas point of use and sub-metering operations to achieve accurate billing in their labs for better cost tracking and control.
-
TOC Analysis: The Best Tool In A Drinking Water Facility's Toolbox5/3/2019
SUEZ Water Technologies & Solutions designs and manufactures Sievers Total Organic Carbon (TOC) Analyzers that enable near real-time reporting of organic carbon levels for treatment optimization, quality control & regulatory compliance. TOC has a wide range of applicability at a drinking water plant, and therefore any drinking water utility — large or small — can measure TOC in their laboratory or online in their treatment process.
-
The Basics: Keeping Our Water Clean Requires Monitoring4/30/2014
Keeping the water in our lakes, rivers, and streams clean requires monitoring of water quality at many points as it gradually makes its way from its source to our oceans. Over the years ever increasing environmental concerns and regulations have heightened the need for increased diligence and tighter restrictions on wastewater quality.
-
Pikeville, Kentucky Medical Center Leak Found Despite Ambient Noise6/23/2021
Leaks found in 60 psi high density PE pipe by FELL in less than three hours. Acoustic and CCTV failed to find any leaks after more than a year of investigation. Read the full case study to learn more.
-
How Activated Carbon Works To Purify Air And Water10/31/2019
The first step is to define the performance limiting factors in the application. For this application, most of the adsorber is used for MTBE adsorption in the ppb concentration range. Adsorption of BTEX, TBA, or humic acids or other total organic carbon (TOC) components are removed by the front end of the column.
-
The Role Of Zeta Potential In Water Treatment Process Control5/27/2020
Physical processes such as sedimentation, flotation and filtration remain at the heart of most process trains for the treatment of water and wastewater flows.
-
Biofouling Control In Cooling Towers With A Halogen Stabilizer10/22/2020
Biofouling in cooling towers is undesirable because it can reduce heat transfer efficiency, restrict water flow, and accelerate corrosion rates. Of even greater concern is the fact that pathogen growth in cooling towers can lead to disease transmission. Given the favorable growth environment of a cooling tower, these microorganisms can reproduce, proliferate and form complex biofilm communities. Legionella bacteria, which cause Legionnaires’ disease, are one of the greatest concerns from a public health standpoint because infections are often lethal and cooling towers are the most frequently reported non-potable water source of Legionnaires’ disease outbreaks (Llewellyn 2017).
LATEST INSIGHTS ON DRINKING WATER
-
No matter where you live in the U.S., you have likely seen headlines about PFAS being detected in everything from drinking water to fish to milk to human bodies. Now, PFAS are posing a threat to the Great Lakes, one of America’s most vital water resources.
-
When people think about agricultural pollution, they often picture what is easy to see: fertilizer spreaders crossing fields or muddy runoff after a heavy storm. However, a much more significant threat is quietly and invisibly building in the ground.
-
As water systems become more circular and complex, understanding and managing the subsurface — the hidden half of the water cycle — is becoming a critical enabler of resilience. This article explores the key trends shaping this new reality, from tackling “forever chemicals” to the water strategies redefining heavy industry.
-
The White House has finalized plans to roll back rules under the National Environmental Policy Act (NEPA), narrowing its focus and limiting what the current administration claims are needless delays for federal approval of water, energy, and other infrastructure plans. For water and wastewater utilities, the changes could speed up permitting for critical projects, although experts warn the tradeoffs could do more harm than good.
-
Setting Global Standards: Inside North America's Only Full-Scale UV Disinfection Validation FacilityPortland's industry-leading facility reaches 100 reactor validations in 23 years.
-
Given the maturation of sensor technology, the scientific and operational hurdles to portable lead analysis are somewhat surprising — but surmountable.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.