DRINKING WATER
Building Resilient Water Treatment: How Ozone Systems Help Utilities Prepare for Extreme Weather
Ozone systems build resilience into water treatment. They ensure utilities remain chemically self-sufficient, allow fast recovery from power outages, and handle rapid water quality shifts.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Keys To A Successful AMI Rollout
With its ability to improve customer service, reduce costs and boost visibility into water distribution systems, AMI has rapidly become a worthwhile investment. The ability to capture and analyze vast amounts of actionable data is at the core of AMI.
-
Straining To Make Diaphragm Operated Automatic Control Valves Effective
Diaphragm Operated Automatic Control Valves (ACVs) require reasonably clean water to function effectively and reliably. Having a strainer upstream of the actual ACV is very important, but also having a smaller strainer located at the inlet of the pilot system on the ACV is also well advised. By Brad Clarke,VP Sales and Marketing, Singer Valve
-
AMI Gets Faster With LoRaWAN® Class B Specification
A smart city effectively harnesses and maximizes the use of digital technology and data analytics to enhance urban management, make well-informed choices, and elevate the standard of living for its inhabitants.
-
Gulf Of Mexico's Hypoxic Zone Larger Than Ever
Last year, the National Oceanic and Atmospheric Administration (NOAA) recorded the largest hypoxic zone in the Gulf of Mexico since monitoring began 32 years ago. Hypoxic waters, often referred to as dead zones, have dissolved oxygen concentrations of less than 2-3 ppm. They are caused by eutrophication or excess nutrients that promote algal growth in water bodies. As algae decompose, they consume oxygen creating dead zones.
-
Shifting Paradigms: How Proactive Strategies Are Revolutionizing Pipeline Management
Proactive pipeline maintenance helps utilities address limited resources and aging infrastructure while maximizing return on investment, improving service quality, and building stronger support from customers and stakeholders.
-
PFAS Remediation: How To Construct A Temporary Solution For A Forever Chemical
This article will discuss considerations for designing a temporary solution for removing per-and polyfluoroalkyl substances (PFAS) from water, including effective technologies and how to select a solutions provider.
-
How Ultrasonic Clamp-On Meters Deliver Savings To Users
Ultrasonic clamp-on meters offer a cost-effective alternative to traditional electromagnetic meters (also called mag meters) and other metering technologies for non-billing applications.
-
Water Treatment's Mass Exodus To Improved Chemical Dosing
Learn why the accuracy of the Coriolis sensors is better than any other insitu measurement technology.
-
Connecting Water Technologies For A True Smart Network
Having worked in partnership with municipalities and water utilities for 40 years, Ovarro understands the pressures to cut leakage has never been greater. Ovarro’s associate product line manager for leakage, Chris Moore, shares insights into how to become smarter in the detection of leaks
-
Joint Restraint vs. Thrust Blocks
The question often arises “Can you really eliminate thrust blocks using joint restraint?” This bulletin will provide you with the information needed for you to realize the answer to that question is “yes”. For many years, thrust blocks have been successfully used in distribution systems all over the world. Thrust blocks, however, are not without limitations.
DRINKING WATER APPLICATION NOTES
-
Analyzing Total Organic Carbon In Sea Water4/2/2015
The analysis of Total Organic Carbon (TOC) in seawater can be both challenging and expensive. The concentration of organic carbon in seawater is of considerable interest. The effect this matrix can have on TOC analyzers can lead to rapid consumable turnover, costly maintenance and repairs.
-
Application Note: Simultaneous Determination Of Total Bound Nitrogen (TNb) And Total Organic Carbon (TOC) In Aqueous Samples5/31/2011Total bound nitrogen (TNb) consists of dissolved ammonia, nitrates, nitrites, amines, and other organic nitrogen-containing compounds. TNb measurements represent an alternative to Total Kjeldahl Nitrogen (TKN) analysis for rapid screening of industrial wastewater, drinking water,agricultural run-off, and surface waters. By OI Analytical
-
Hemodialysis Patient Health10/29/2021
Controlling dialysate quality is critically important to hemodialysis patient health. Complications as minor as nausea and fatigue or as severe as metabolic acidosis and sepsis can result if dialysate composition is incorrect. All the factors that ultimately affect dialysate composition must therefore be carefully monitored and controlled: proper proportioning and mixing of concentrates with water; the quality of water mixed with concentrates to form dialysate; and the quality of water used in the reprocessing of hemodialyzers, system maintenance and disinfection.
-
Determination Of Hexanal In Foods Utilizing Dynamic Headspace4/9/2015
Hexanal is one of many well-documented aromatic components that contribute to flavor and aroma in common consumer food products containing omega-6 fatty acids. Hexanal content is also used to measure the oxidative status of foods rich in omega-6 fatty acids.
-
Drinking Water Testing By Ion Chromatography Using Ultrapure Water9/29/2022
This application note demonstrates the suitability of ultrapure water produced by a Milli-Q IQ 7000 water purification system for the IC analyses of inorganic ions and DBPs in drinking water.
-
Application Note: Busseron Creek Watershed Partnership Addresses Concerns In A Rural Watershed1/20/2010As with other watershed organizations, the Busseron Creek Watershed Partnership (BCWP) exists because of surface water quality degradation. In this case, those waters drain 163,231 acres of a watershed that crosses the boundaries of Vigo, Clay, Green, and Sullivan counties in West- Central Indiana. By YSI
-
Bridge Crossings And The Proper Use Of EX-TEND®, FLEX-TEND®, And Force Balanced FLEX-TEND Products11/1/2020
Of particular interest when it comes to bridges is the locating of pressurized water lines on and under bridge structures. Pressurized pipelines can present a number of unique challenges to the design engineer and utility owner.
-
Network Monitors Water Quality In Shale Gas Drilling Region9/2/2011High-pressure injection of water, sand, and chemicals that fracture shale deposits deep underground to free trapped natural gas is employed by drillers tapping the Marcellus shale beds, a geologic deposit that stretches from central New York to Virginia and contains gas believed to be worth hundreds of billions of dollars. By YSI
-
Simplify And Optimize Your Process With Level And Pump Control3/1/2022
Level controllers have evolved to meet today’s environmental challenges and industry demands. Learn how they support improved process management and, ultimately, a better bottom line.
-
'TOTEX' Is Key When Purchasing Instrumentation4/29/2021
There’s a lot to be considered in the price tag of an ultrasonic instrument. Derek Moore from Siemens explains how the historical way of thinking only of capital costs needs to change to the more holistic approach of total expenditures.
LATEST INSIGHTS ON DRINKING WATER
-
Amazon and Xylem partner to tackle Mexico’s leaking water systems as the country balances water scarcity and a growing tech sector.
-
Water scarcity is increasingly impacting sectors from agriculture and energy to urban planning and high-tech manufacturing. Recently, industry leaders gathered to explore how new technologies and complex industrial demands are forcing a fundamental rethinking of water infrastructure.
-
Nobel-winning molecular materials are poised to reinvent purification, desalination, and reuse.
-
Researchers have developed polyimide-based membranes for membrane distillation (MD) that overcome three persistent issues in membranes for water treatment and gas separations: the need for pore-forming chemicals that prevent recycling, performance degradation due to pore wetting and fouling, and the inherent trade-off between high water flux and selectivity.
-
Small municipalities and industrial sites face constant pressure: deliver safe, stable water with limited resources and tight deadlines. Traditional on-site construction can stretch project schedules by months and introduce quality and cost risks. By shifting much of the fabrication off-site, these risks are dramatically reduced.
-
The 2024 hurricane season was one of the most severe on record, creating unprecedented destruction to the tune of $182.7 billion worth of damage. Scientists predict that this year's storm season, which officially began June 1, will likely be highly active and volatile as well. As hurricanes become more difficult to accurately predict and prepare for, the damage caused by burst pipes, flooding, downed trees and debris, and disrupted utilities is also increasing.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.