DRINKING WATER
Empowering Water Utilities Through Meter Data
Modernizing water infrastructure requires robust digital systems to manage high-volume metering data. Centralizing this information enables precise leak detection, accurate water balancing, and proactive customer engagement, ultimately driving operational efficiency and long-term sustainability goals.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Condition Assessment At Spring Creek Ranch
Learn why Spring Creek Ranch chose Echologics to survey 1.7 miles of 12-inch ductile iron pipe, utilizing the ePulse® method to assess the condition of the over 40-year-old pipes.
-
Assessing Key Unconventional Shale Wastewater Trends And Opportunities
The shale-gas boom could make water the most important commodity product of the 21st century.
-
City Of Austin, Texas Installs A Total of 4,500 Pounds‐Per‐Day Of On‐ Site Hypochlorite Capacity Using the Microclor® OSHG System
With 100 years of service history, Austin Water has seen enormous change in its 540 square miles of service area. Planning for the next 100 years has city and utility planners considering a diversity of sources, system resilience, and sustainability while being mindful of conservation goals. In the city’s newest water treatment plant, WTP4, Austin Water was able to combine those planning elements into a state‐of‐the‐art treatment plant. The plant, which is located on Lake Travis, is capable of treating 50 million gallons a day (MGD) with the ability to expand to 300 MGD.
-
Ultrasonic And Radar Level Technologies: Bringing Clarity To The Water And Wastewater Market
If your head spins after reading how amazing one level measurement technology is in comparison to another, understanding the key attributes of these technologies and their applicability to specific processes may help to clear the waters.
-
AFC SEMPER RPM Offers Water Hammer Insight For Monroe, North Carolina
Discover how the implementation of pressure sensing technology has allowed the city of Monroe, North Carolina to gain greater insight into its distribution system and why main breaks were occurring.
-
Mueller Has You Covered For Domestic Products
Since 1857, Mueller Water Products have been helping municipalities increase operational efficiencies, improve customer service and prioritize capital spending. Throughout this time Mueller has played an essential role in the research, development and manufacturing of products and services used in water systems across North America.
-
Hydra-Stop Solutions Isolate Damaged Valve During Water Main Replacement
The Village of Covington, Ohio had an ambitious 90-day project to replace the water main, taps, sewer main, laterals, and storm sewer through the center of town. Unfortunately, on day one, an unknown water service line was snagged and the top half of an 8” valve blew off, causing water to shoot 10”–12” out of the street.
-
Stainless Steel Mechanical Joint Repair Sleeve For Saltwater Application
A 24” HDPE pipeline providing water to Sullivan’s Island was installed and submerged under the channel. After installation and put into service, a fused joint failed. A temporary repair, using available products located at local warehouse, to keep customers in service was completed. The local public utility needed a permanent, pressure repair solution to be installed, by dive technicians underwater, without disruption to service to island. Read the full case study to learn more.
-
Hendersonville Water Treatment Plant Features Innovative Disinfection System
Hendersonville Utility District (HUD) serves one of the most populous suburbs of Nashville, Tennessee.
-
How To Get Greater Accuracy With Lower Flows In Commercial And Industrial Meters
Advanced commercial and industrial (C&I) ultrasonic meters have exceptional turndown ratios, water conditioning, and other features that are lowering operating costs, increasing revenue, and minimizing maintenance.
DRINKING WATER APPLICATION NOTES
-
How To Read An Encoder9/13/2013
The HR-E LCD encoder has a 9-digit Liquid Crystal Display (LCD) to show consumption, flow and alarm information. The display automatically toggles between 9-digit and 6-digit consumption, rate of flow and meter model.
-
UV Technology Offers Solution For Emerging Water Crisis2/19/2014
Many are turning to UV as an effective barrier to enable the reuse of wastewater, for indirect reuse, and aquifer recharge.
-
Free Chlorine Measurement In Drinking Water Treatment12/21/2005
Before water can be used as a safe and reliable source for drinking water, it must be properly treated. Since water is a universal solvent, it comes in contact with several different pathogens, some of which are potentially lethal, and inactivation is accomplished through chemical disinfection and mechanical filtration treatment. This treatment consists of coarse filtration to remove large objects and pre-treatment which includes disinfection using chlorine or ozone
-
Dosing Of Sodium Hypochlorite Solution For Drinking Water Disinfection9/22/2022
A water purveyor was in urgent need of a chemically resistant flow instrumentation with a long life of service that allowed reliable and long-term stable dosing of the sodium hypochlorite solution.
-
The Active Control Program For Advanced UV Oxidation12/1/2025
This application note will explore how active control programs lower operational costs of compliant contaminant removal.
-
Waterworks Joints 10110/30/2025
There are many different joints that can be found on waterworks pipeline components. This paper focuses on the three most common joints.
-
Leak Detection On Water Distribution Network Using Clamp-On Flowmeters5/22/2023
A global engineering company realized that their leak identification methods were time consuming and expensive, and so began to explore alternative solutions, such as ultrasonic flow meters.
-
Hydrogen Sulfide Removal From Water Using AquaSorb® CX-MCA2/19/2014
The “rotten egg” odor in some water supplies is caused by sulfide in water. Sulfide can be treated using oxidation techniques, the goal being to convert the sulfide to high oxidation state species such as sulfate to eliminate the taste and odor concerns. Traditional oxidation techniques such as ozone and chlorine can be used, but can be expensive due to the equipment required to add and monitor the oxidant, and can lead to by-products such as trihalomethanes (THMs), which are regulated in drinking water supplies.
-
Aries Arsenic Reduction1/7/2026
Arsenic has no smell, taste, or color when dissolved in water even in high concentrations. It is a potential concern to those who live in areas with high natural deposits of arsenic, receive runoff from orchards, or from glass and electronic production waste. Long-term exposure to arsenic can cause a number of harmful effects on the human body including cancer, skin lesions, cardiovascular disease and diabetes, among others.
-
Application Note: YSI Real-Time Water Quality Monitoring And The IPSWATCH-EMPACT Program12/28/2005The Ipswich and Parker Rivers watersheds lie only a short distance north of Boston, MA. The first settlements in these watersheds began in the early 1600s. Since that time, residents have relied heavily on the natural resources of the Parker and Ipswich Rivers, their coastal estuaries and Plum Island Sound, which is known as the Great Marsh. This ecosystem has been designated and protected by the Commonwealth of Massachusetts as an Area of Critical Environmental Concern (ACEC).
LATEST INSIGHTS ON DRINKING WATER
-
Restoring eelgrass beds is critical because they provide habitat for many kinds of marine life, improve water quality by filtering out pollution, and the plant’s root system stabilizes the sediment on the seafloor, protecting shorelines from erosion.
-
No matter where you live in the U.S., you have likely seen headlines about PFAS being detected in everything from drinking water to fish to milk to human bodies. Now, PFAS are posing a threat to the Great Lakes, one of America’s most vital water resources.
-
When people think about agricultural pollution, they often picture what is easy to see: fertilizer spreaders crossing fields or muddy runoff after a heavy storm. However, a much more significant threat is quietly and invisibly building in the ground.
-
As water systems become more circular and complex, understanding and managing the subsurface — the hidden half of the water cycle — is becoming a critical enabler of resilience. This article explores the key trends shaping this new reality, from tackling “forever chemicals” to the water strategies redefining heavy industry.
-
The White House has finalized plans to roll back rules under the National Environmental Policy Act (NEPA), narrowing its focus and limiting what the current administration claims are needless delays for federal approval of water, energy, and other infrastructure plans. For water and wastewater utilities, the changes could speed up permitting for critical projects, although experts warn the tradeoffs could do more harm than good.
-
Setting Global Standards: Inside North America's Only Full-Scale UV Disinfection Validation FacilityPortland's industry-leading facility reaches 100 reactor validations in 23 years.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.