Drinking Water Application Notes
-
Biofouling Control In Cooling Towers With A Halogen Stabilizer
10/22/2020
Biofouling in cooling towers is undesirable because it can reduce heat transfer efficiency, restrict water flow, and accelerate corrosion rates. Of even greater concern is the fact that pathogen growth in cooling towers can lead to disease transmission. Given the favorable growth environment of a cooling tower, these microorganisms can reproduce, proliferate and form complex biofilm communities. Legionella bacteria, which cause Legionnaires’ disease, are one of the greatest concerns from a public health standpoint because infections are often lethal and cooling towers are the most frequently reported non-potable water source of Legionnaires’ disease outbreaks (Llewellyn 2017).
-
LC-MS Analysis Of 33 PFAS Compounds In 5 Minutes
11/4/2021
In response to environmental testing demands for faster LC-MS analyses, the new Ascentis® Express PFAS HPLC and delay columns allow the highly efficient separation of 33 PFAS compounds in 5 minutes with reduced background contamination.
-
Remote Monitoring And Maintenance Through Digitalization
3/17/2020
Siemens offers to our customers the ability to make both process measurements, and to remotely monitor the activity and health of instrumentation, whether you have a SCADA, PLC or DCS system, or not. By utilizing Siemens’ ability to offer unparalleled flow, level, pressure, temperature, and weight measurement we can provide a broad range of process measurements and offer unequaled monitoring of the health and performance of those products.
-
Harmonics Reduction Methods
4/17/2017
There are several basic methods for reducing harmonic voltage and current distortion from nonlinear distribution loads such as adjustable frequency drives (AFDs). Following is a description of each method, along with each method’s advantages and disadvantages.
-
Best Practices In Moist And Wet Gas Flow
12/20/2021
The Wet Gas MASSter sensor is for use in applications that have a high level of moisture or condensation present in the gas flow stream that cannot otherwise be removed.
-
Application Note: Low-Flow Sampling Of Water Quality Parameters Used In Determining Groundwater Stability
1/20/2010
In April 1996, the U.S. EPA developed and published a document entitled Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. The document states that “the most common ground water purging and sampling methodology is to purge wells using bailers or high speed pumps to remove 3 to 5 casing volumes followed by sample collection.” Adverse impacts can occur through this method affecting sample quality by increasing levels of turbidity. These problems can often be mitigated by using low-flow purging and sampling to reduce sampling-induced turbidity. By YSI
-
Hydrogen Sulfide Removal From Water Using AquaSorb® CX-MCA
2/19/2014
The “rotten egg” odor in some water supplies is caused by sulfide in water. Sulfide can be treated using oxidation techniques, the goal being to convert the sulfide to high oxidation state species such as sulfate to eliminate the taste and odor concerns. Traditional oxidation techniques such as ozone and chlorine can be used, but can be expensive due to the equipment required to add and monitor the oxidant, and can lead to by-products such as trihalomethanes (THMs), which are regulated in drinking water supplies.
-
Removal Of PFCs With Activated Carbon
12/30/2013
In recent years, various perflorinated chemicals (PFCs) have come under increasing scrutiny due to their presence in the environment, in animals, and in human blood samples. There are two major classes of PFCs: perfluoroalkyl sulfonates such as perfluorooctanesulfonic acid (PFOS) and long chain perfluoroalkyl carboxylates such as perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA).
-
Municipal Real-Time Water Quality Monitoring
9/24/2020
We arm municipalities with actionable data necessary to make informed decisions about water quality in their communities
-
Bardac® LF 18 — A Novel Cooling Water Algaecide
10/23/2020
The active ingredient in Bardac® LF 18 is dioctyl dimethyl ammonium chloride. This product comes in two concentrations: -10WT (10% w/w) and -50WT (50% w/w). Several chemical properties of this product yield key benefits that set it apart from other industrial cooling water products. It is a quaternary ammonium compound (quat). Quats are typically low cost and highly effective biocides for a broad spectrum of organisms.