WASTEWATER FLOW CONTROL RESOURCES

  • COVID-19 And Wastewater Utilities

    Today, the world is facing unprecedented circumstances that are affecting every single sector and the water service is no exception. Although there is still more research to be done, this article has collected the currently available information to highlight how wastewater utilities have been affected by the COVID-19 pandemic. More specifically, this article will attempt to look at the outbreak’s impact on utilities, the potential hazards, and the predominant solution.

  • Improve Your Plant Efficiency With Accurate Water And Wastewater Monitoring

    A West Coast wastewater management facility provides design, management, and maintenance of the sanitary sewer system for an entire county, including the conveyance system and treatment system. The wastewater treatment plant has been established for over 50 years and has the capacity to treat 41 million gallons of sanitary sewage per day (mgd).value chain. Siemens suggested that the customer try the Siemens HydroRanger 200 controller. The HydroRanger 200 uses proven, continuous, ultrasonic echo ranging technology to monitor water and wastewater of any consistency up to 15 m (50 ft) in depth.

  • Remote Monitoring Provides Water Resilience During Crisis

    Managing three drinking water treatment facilities, multiple pump stations, more than 350 miles of pipelines, and a wastewater treatment facility is challenging even in normal conditions for a small city where agriculture is an economic driver and water demand can exceed 22 MGD.

  • Calibrating Success: Improved Tools To Maintain Flowmeter Accuracy

    Water utilities with highly successful monitoring programs tend to share a common trait: they have a well-defined plan for calibration that emphasizes frequency and tracking. However, when done properly, this process is time-consuming and often leads to unnecessary labor and downtime. The good news is that advanced metering technology is available for plants to get a better handle on the instrument’s performance with significantly less effort.

  • Water Monitoring's Triple Threat: Bad Habits, Bad Readings, Bad Results

    When water and wastewater plant operators can’t get accurate flow measurements or analytical readings — or lack confidence in their instruments’ readings — it creates challenges with the process. When substandard water goes to homes and causes a boil order, or discharge pollutes a lake or reservoir, the resulting bad press, fines, and potential lawsuits erode public confidence. Avoiding these kinds of problems is rooted in good preventive maintenance habits.

  • Sounding The Alarm On Silent Noncompliance

    Water and wastewater utility operators work diligently to operate within strict guidelines, ensuring their facilities are producing the best drinking water and highest quality effluent possible. Despite all their efforts, however, it can be easy to fall outside of regulatory compliance without even being aware. The key to avoiding problems like these is to understand how silent noncompliance can happen and knowing when to raise a red flag.

  • Sending Your Wet Weather Problem Back To The Cloud(s)

    Most of us don’t have to think about the vital infrastructure that supports our society.  Water is delivered to our homes and businesses 24/7, and wastewater is efficiently and cleanly whisked away.  The ability of our utilities to manage these services means we only take notice at times of inconvenience: water outages, sewer blockages, or stormwater overflows. 

  • Saving Infrastructure With Sensors In The Sewer

    With a little help from AI (artificial intelligence) and IoT (the Internet of Things), Kansas City gives a lesson on UEA-MEP — utilizing existing assets to the maximum extent possible.

  • Water 4.0 And The Wastewater Cycle

    While it may be premature to claim wastewater management’s arrival in the digital age, we can herald the eventuality, chart the progress, and examine potential implications.

  • Benefits Of Remote Access To Primary Wastewater Treatment

    A real-world, industrial application of remote process monitoring proves that a little technology can go a long way in terms of cost savings and process improvement.

WASTEWATER FLOW CONTROL MEASUREMENT SOLUTIONS

  • HydroRanger 200

    The HydroRanger 200 gives you unparalleled ease of use, setup in under a minute, customer-driven features, and PROFIBUS DPV1- all to make your work simpler and to provide the reliability you have grown to trust in Siemens ultrasonic controllers.

  • QLF Series In-Line Ultrasonic Flow Meters For Low Viscosity Low Flow Rate Applications

    The QLF Series in line ultrasonic flow meter has been specifically designed for low flow rate applications that require excellent accuracy & reliability. The compact QLF Series has no moving parts, non-wetted sensors and no obstructions in the flow stream to cause an increase in pressure drop; this results in a very rugged, reliable and accurate flow meter. High accuracy & repeatability is achieved through the unique measurement section within the flow meter where the flow is conditioned and delta T is measured along the axis of the flow meter. The small footprint, lightweight device is ideal for low viscosity liquid applications including water, water-based products, oils, and its all plastic construction makes it the meter of choice for many corrosive fluids.

  • QCT Series In-Line Ultrasonic Flow Meters for Low Viscosity Liquid Applications

    The compact QCT Series has no moving parts and there is nothing in the flow stream that will cause an increase in pressure drop; this results in a very rugged, reliable and accurate flow meter. High accuracy & repeatability is achieved through the unique measurement section within the flow meter where the flow is conditioned and delta T is measured along the axis of the flow meter. The small footprint, lightweight device is ideal for low viscosity liquid applications including water, water-based products, oils, and its all plastic construction makes it the meter of choice for many corrosive fluids.

  • EL 1100 Series Wafer Mag Meter For OEM Applications

    The EL1100 series of electromagnetic flow meters represent the state of the art for the accurate measurement for OEM process applications. This new generation flow meter utilizes an innovative structure to route the electromagnetic signal generated by the electrodes, providing a flow meter with an extremely wide measurement range. With no moving parts, the EL1100J provides a compact installation with wafer connections making it a solid choice for OEMs.

  • OPTISONIC 7300 Ultrasonic Flowmeter

    The OPTISONIC 7300 is a universal 2-path ultrasonic gas flowmeter for process and utility gas measurements in oil and gas refineries or the chemical or petrochemical industries. It is also suitable for non-custody transfer natural gas applications or applications with (compressed) air, mixed or flue gases (up to +180°C / +356°F). Using the transit time differential measuring principle, the OPTISONIC 7300 delivers high performance over a wide flow range (up to DN600 / 24", turndown ratio: 100:1). Its patented titanium transducers are perfectly focused, equalizing process fluctuations and avoiding acoustic feedback.

WASTEWATER FLOW CONTROL MEASUREMENT VIDEOS

What happens when flow to your analyzer is inadequate or even stopped? Best case - questionable data. Worst case - damage to critical systems. That's why Swan analyzers feature built-in flow sensors. Watch this short video to learn more.

FLOW CONTROL AND MEASUREMENT

 

Flow measurement can be defined as quantification of the movement of water in a given channel. Flow can be measured either by determining the displacement and/or Velocity of the water. Water meters usually control measure and display total usage in cubic meters, on either mechanical or electronic registers. 

Flow can be divided into two main flows which are: Open channel flow and Closed conduit flow. Flow is controlled by use of valves at intervals to either to slow down, allow faster flow or completely shut down the flow. Some water meters usually perform both the function or making readings and controlling flow while others just conduct measuring only. 

Meters for reclaimed water contain special lavender register covers show that the water is non-potable. Velocity-type meters measure the velocity of flow through a meter of a known internal capacity. The speed of the flow can then be converted into volume of flow for usage. Since Multi-jet meters are usually very accurate in small sizes they are normally used for residential and smaller commercial uses. Turbine meters are not as accurate as jet meters and displacement meters at low flow rates. 

A compound meter is used where high flow rates are necessary. Magnetic flow meters are a velocity-type water meter, except that they use electromagnetic properties to determine the water flow velocity. In water treatment plants, measurement and control devices can be installed in the following locations: within interceptors or manholes, the head of the plant, in the force mains that lead to main tanks etc. Automatic Meter Reading has compelled producers to build pulse or encoder registers to provide electronic output for radio transmitters, reading storage devices, and data logging devices.