WASTEWATER FLOW CONTROL RESOURCES

  • Improve Your Plant Efficiency With Accurate Water And Wastewater Monitoring

    A West Coast wastewater management facility provides design, management, and maintenance of the sanitary sewer system for an entire county, including the conveyance system and treatment system. The wastewater treatment plant has been established for over 50 years and has the capacity to treat 41 million gallons of sanitary sewage per day (mgd).value chain. Siemens suggested that the customer try the Siemens HydroRanger 200 controller. The HydroRanger 200 uses proven, continuous, ultrasonic echo ranging technology to monitor water and wastewater of any consistency up to 15 m (50 ft) in depth.

  • Remote Monitoring Provides Water Resilience During Crisis

    Managing three drinking water treatment facilities, multiple pump stations, more than 350 miles of pipelines, and a wastewater treatment facility is challenging even in normal conditions for a small city where agriculture is an economic driver and water demand can exceed 22 MGD.

  • Calibrating Success: Improved Tools To Maintain Flowmeter Accuracy

    Water utilities with highly successful monitoring programs tend to share a common trait: they have a well-defined plan for calibration that emphasizes frequency and tracking. However, when done properly, this process is time-consuming and often leads to unnecessary labor and downtime. The good news is that advanced metering technology is available for plants to get a better handle on the instrument’s performance with significantly less effort.

  • Water Monitoring's Triple Threat: Bad Habits, Bad Readings, Bad Results

    When water and wastewater plant operators can’t get accurate flow measurements or analytical readings — or lack confidence in their instruments’ readings — it creates challenges with the process. When substandard water goes to homes and causes a boil order, or discharge pollutes a lake or reservoir, the resulting bad press, fines, and potential lawsuits erode public confidence. Avoiding these kinds of problems is rooted in good preventive maintenance habits.

  • Sounding The Alarm On Silent Noncompliance

    Water and wastewater utility operators work diligently to operate within strict guidelines, ensuring their facilities are producing the best drinking water and highest quality effluent possible. Despite all their efforts, however, it can be easy to fall outside of regulatory compliance without even being aware. The key to avoiding problems like these is to understand how silent noncompliance can happen and knowing when to raise a red flag.

  • Sending Your Wet Weather Problem Back To The Cloud(s)

    Most of us don’t have to think about the vital infrastructure that supports our society.  Water is delivered to our homes and businesses 24/7, and wastewater is efficiently and cleanly whisked away.  The ability of our utilities to manage these services means we only take notice at times of inconvenience: water outages, sewer blockages, or stormwater overflows. 

  • Saving Infrastructure With Sensors In The Sewer

    With a little help from AI (artificial intelligence) and IoT (the Internet of Things), Kansas City gives a lesson on UEA-MEP — utilizing existing assets to the maximum extent possible.

  • Water 4.0 And The Wastewater Cycle

    While it may be premature to claim wastewater management’s arrival in the digital age, we can herald the eventuality, chart the progress, and examine potential implications.

  • Benefits Of Remote Access To Primary Wastewater Treatment

    A real-world, industrial application of remote process monitoring proves that a little technology can go a long way in terms of cost savings and process improvement.

  • 3 Dirty Little Secrets About Coriolis Flow Meters

    Ever since Coriolis flow measurement technology achieved mainstream appeal, industry has been fervently striving to take advantage of its benefits. And while Coriolis is clearly a highly advantageous solution for many crucial flow measurement applications, it is not without flaw.

WASTEWATER FLOW CONTROL MEASUREMENT SOLUTIONS

  • HydroRanger 200

    The HydroRanger 200 gives you unparalleled ease of use, setup in under a minute, customer-driven features, and PROFIBUS DPV1- all to make your work simpler and to provide the reliability you have grown to trust in Siemens ultrasonic controllers.

  • OPTISONIC 7300 Ultrasonic Flowmeter

    The OPTISONIC 7300 is a universal 2-path ultrasonic gas flowmeter for process and utility gas measurements in oil and gas refineries or the chemical or petrochemical industries. It is also suitable for non-custody transfer natural gas applications or applications with (compressed) air, mixed or flue gases (up to +180°C / +356°F). Using the transit time differential measuring principle, the OPTISONIC 7300 delivers high performance over a wide flow range (up to DN600 / 24", turndown ratio: 100:1). Its patented titanium transducers are perfectly focused, equalizing process fluctuations and avoiding acoustic feedback.

  • OPTISONIC 6300 Ultrasonic Clamp-On Flowmeter

    The OPTISONIC 6300 is an ultrasonic clamp-on flowmeter for permanent mount installation. It is particularly suitable for flow measurement of (non-)conductive liquids at any location where inline measurement is not possible or desirable. The flowmeter consists of a combination of one or two clamp-on sensors and one ultrasonic signal converter. Its robust clamp-on rail is highly flexible and can be very easily attached to virtually any pipe up to DN4000 / 160".

  • OPTISONIC 6300 P Ultrasonic Clamp-On Flowmeter

    The OPTISONIC 6300 P is a portable, battery-powered ultrasonic clamp-on flowmeter for temporary flow measurement of (non-)conductive liquids. It can be used at virtually any location and without process interruption or need to cut pipes. Due to its flexibility, the meter is equally suited for comparative measurements on stationary measuring equipment (e.g. pumps, flowmeters etc.) or for use as a short-term replacement of faulty devices. As standard the clamp-on flowmeter is also provided with a measurement option for thermal energy applications.

  • OPTISONIC 3400 Ultrasonic Flowmeter

    The OPTISONIC 3400 is a 3-path ultrasonic inline flowmeter designed for a wide range of standard or more demanding process applications with homogeneous, non-viscous aqueous liquids as well as viscous fluids of up to over 1000 cSt. It is also the perfect choice for applications with cryogenic products (as low as -200°C / -328°F), media with extended temperature ranges (up to +250°C / +482°F) as well as low or extreme pressure ratings. The OPTISONIC 3400 offers a broad range of diameters – from DN25 / 1" for dosing purposes to DN3000 / 120" for water transportation pipelines.

WASTEWATER FLOW CONTROL MEASUREMENT VIDEOS

Rob Gledhill, President and CEO of Blue-White, speaks about the company’s various offerings from chemical metering pumps (diaphragm, peristaltic), to flowmeters (variable-area, paddlewheel, ultrasonic), and water treatment accessories.

FLOW CONTROL AND MEASUREMENT

 

Flow measurement can be defined as quantification of the movement of water in a given channel. Flow can be measured either by determining the displacement and/or Velocity of the water. Water meters usually control measure and display total usage in cubic meters, on either mechanical or electronic registers. 

Flow can be divided into two main flows which are: Open channel flow and Closed conduit flow. Flow is controlled by use of valves at intervals to either to slow down, allow faster flow or completely shut down the flow. Some water meters usually perform both the function or making readings and controlling flow while others just conduct measuring only. 

Meters for reclaimed water contain special lavender register covers show that the water is non-potable. Velocity-type meters measure the velocity of flow through a meter of a known internal capacity. The speed of the flow can then be converted into volume of flow for usage. Since Multi-jet meters are usually very accurate in small sizes they are normally used for residential and smaller commercial uses. Turbine meters are not as accurate as jet meters and displacement meters at low flow rates. 

A compound meter is used where high flow rates are necessary. Magnetic flow meters are a velocity-type water meter, except that they use electromagnetic properties to determine the water flow velocity. In water treatment plants, measurement and control devices can be installed in the following locations: within interceptors or manholes, the head of the plant, in the force mains that lead to main tanks etc. Automatic Meter Reading has compelled producers to build pulse or encoder registers to provide electronic output for radio transmitters, reading storage devices, and data logging devices.