Water Membranes White Papers and Case Studies

  1. Santa Barbara, Curaçao Desalination Plant: Six Years Of Operation Of LG Chem Thin Film Nanocomposite (TFN) SWRO Membrane
    5/14/2018

    The Santa Barbara desalination plant located in the south-eastern part of Curaçao provides drinking water to about half of the population of this Caribbean island. With an average precipitation of approximately 500 mm, rainwater is the only natural source of freshwater in the island. Government efforts to address the water shortage problem date back to the 20s of the last century. Initially based on evaporation, the seawater desalination evolved into the reverse osmosis technology in the 90s. After several years of experimenting with RO, Aqualectra, the municipal supplier of potable water and electricity for Curaçao, took the decision to move forward with this technology and in 2003 started a project to build a SWRO desalination plant.

  2. Savings Helps MABRs Gain Traction In Municipalities
    5/9/2018

    An MABR is essentially a biological wastewater treatment process that utilizes seemingly passive aeration through oxygen-permeable membranes. Oxygen transfer through the MABR membranes is diffusion based: driven by concentration differences such that oxygen passes from air at atmospheric pressure into water at a higher hydrostatic pressure. This oxygen transfer mechanism, wherein air is supplied to the process at very low pressure, is the reason MABRs have significantly lower energy consumption compared to other wastewater treatment processes, such as conventional activated sludge (CAS), that utilize diffusers. This energy savings is one of the key reasons MABRs are gaining traction in the municipal wastewater industry.

  3. Desalinating Brackish Groundwater Eases Water Shortage
    4/23/2018

    The city of Limassol in Cyprus was experiencing an increasingly severe water shortage, with the growing population and expanding tourist industry placing extra pressure on existing supply. An aquifer in a residential neighborhood was seen as a potential water source, but had high levels of salts and nitrates. The Cyprus Water Development Department (WDD) awarded Fluence a Build-Own-Transfer (BOT) contract to implement a cost-effective solution.

  4. Membrane Technologies In Containerized Units Allow For Installation In A Small Footprint
    4/23/2018

    After an international tender process, the Israel Electric Company (IEC) chose Fluence to design, manufacture, and supply containerized ultrapure water production systems for use as makeup water for heat-recovery steam generators (HRSG) and for NOx emission reduction at recently upgraded power plants across Israel. More than 15 units of 20 m3/h production modules, each fitted in two 40-foot shipping containers, were provided to seven power plants. Their compact design allowed for ease of installation, operation, and maintenance while meeting the customer’s demanding engineering standards.

  5. Addressing Fouling Challenges In Water Treatment With RO Membrane
    4/18/2018

    Reverse osmosis (RO) membranes are widely used in potable water, wastewater, and industrial applications. However, a major issue in the application of RO membrane technology for desalination and wastewater reclamation is membrane fouling. It limits operating flux, decreases water production, and increases power consumption. Membrane fouling also increases the need for RO plants to perform periodical membrane CIP procedure. These problems decrease process efficiency, increase operation cost, and raise environmental issues related to the CIP solutions disposal.

  6. MABR Is The Big Cheese For This Dairy Farming WWTP
    1/29/2018

    Hayogev is a residential development in the rural area of Jezreel Valley, with 1000 homes, agricultural fields and dairy farms. Located in an open field next to small farms, the local treatment facility handles wastewater from HaYogev and Midrach Oz. The customer was looking for a localized wastewater treatment solution to replace the existing pond system, which faced difficulties in treating the wastewater due to high levels of nutrients. A new state-level regulation concerning reclaimed water required the wastewater treatment plant (WWTP) operator to reduce the nutrients in the effluent stream. The solution had to be odorless and quiet, have low power consumption, and use the existing pond and structure.

  7. Denitrification Technology Significantly Improves Polluted Chesapeake Bay Watershed
    11/14/2017

    The 64,000 sq ft Chesapeake Bay Watershed includes parts of MD, VA, WV, PA, and NY. Of the 1,000s of WWTPs supporting nearly 18 million people in the watershed, 470 are designated by EPA as significant sources of nutrients and TSS. Algal blooms reduce DO levels in the water, killing plant and animal life — from marsh grasses to blue crabs to rockfish. Learn how De Nora TETRA Denite technology is treating 450+ MGD in the Bay.

  8. Protecting Water Resources: A Multifaceted Approach
    11/7/2017

    As the cost of and demand for potable water increases, engineers, planners, and utilities need reliable, innovative methods for protecting this valuable resource. Cost-effective and environmentally sustainable wastewater collection and treatment systems are vital components in the water cycle and therefore require careful analysis. While there is no single solution for every site or community, traditional ‘big-pipe’ systems are rarely appropriate in sensitive environments; fortunately, today there are more options than ever to consider.

  9. Fluence’s MABR For Wastewater Treatment features Passive Aeration And Saves Up To 90% On Energy Costs
    10/26/2017

    The Bordeaux region of St. Thomas had a pressing need for a wastewater treatment plant that produces high effluent quality. Its existing plant was old and did not meet regulation nor industry standards. Fluence, together with its partner SD&C Inc., built an MABR-based wastewater treatment plant from the ground up, utilizing whatever existing pieces of equipment could be used from the old plant.

  10. Membrane Module Pilot Test In North Dakota
    10/11/2017

    Toray UF membrane modules were piloted over a fifteen-week period to help service the growing demand for clean water in southwest North Dakota. The outcome, as part of the Southwest Pipeline Project (SWPP), would be construction of the Oliver-Mercer-North Dunn (OMND) Water Treatment Plant.