Drinking Water Treatment Application Notes

  1. NEOSEP® Membrane Bioreactor System Simplifies 'Fundamental Necessities' Of MBR
    1/17/2014

    The NEOSEP® MBR system features Kruger’s uniquely designed K-120C and K-240C flat sheet membrane modules.  The modules offer several innovative design features that enhance ease of installation, operation and maintenance.  This includes an integrated central lifting eye, offering an incredibly well balanced module that makes installation and retrieval a simple and stress-free process.

  2. Measuring The Chlorine Content In The Emergency Chlorination Of Waterworks
    12/14/2011

    Many municipal waterworks perform no permanent disinfection of drinking water. However, in many cases a process known as emergency chlorination takes place. The process is switched on in case of need, adding chlorine to the drinking water as a disinfectant.

  3. Control Of Drinking Water Clarifiers
    4/13/2017

    "The variable concentration of solids when purging lamella clarifiers creates problems with sludge dewatering. These problems are exacerbated when changing the flocculant. Read the full application note to learn how automatic control of purge cycles for clarifiers using the Sonatax sludge level probe resulted in reduced energy consumption and maintenance at the plant."

  4. Removal Of Chloramines With Activated Carbon
    12/30/2013

    In order to reduce the formation of harmful disinfection byproducts in drinking water, alternative disinfectant use has become increasingly widespread. Monochloramine is a leading alternative disinfectant that offers advantages for municipal water. This tech brief details the removal of monochloramine using activated carbon.

  5. Application Note: YSI Water Quality Monitoring Buoys Help Connecticut DOT Protect The Housatonic River
    12/27/2005
    When replacement of the Sikorski Bridge spanning the Housatonic River was authorized, Paul Corrente and the Connecticut Department of Transportation (CT-DOT) set about the design and development of a water quality monitoring program to monitor the contractor’s in-water activities to insure full protection of the river from perturbation
  6. Activated Carbon And Adsorption Of Trichloroethylene (TCE) And Tetrachloroethylene (PCE)
    12/30/2013

    Trichloroethylene (TCE) and Tetrachloroethylene (PCE) are two of the most common solvents that contaminate groundwater supplies in the United States. Both solvents see frequent use in the extraction of fat, in the textile industry, in the production of various pharmaceutical and chemical products. TCE is also used as a degreaser from fabricated metal parts, and PCE serves as a component of aerosol dry-cleaning solvents.

  7. Improved Efficiencies In TOC Wastewater Analysis For Standard Method 5310B And EPA Method 415
    10/16/2014
    Total organic carbon (TOC) measurement is of vital importance to the operation of water treatment due to organic compounds comprising a large group of water pollutants. TOC has been around for many years, and although it is a relatively simple analysis in theory, operational efficiency is paramount.
  8. Immediate pH Correction For Fluctuating Flow
    2/19/2014

    In a number of water, wastewater and industrial process applications, pH is one of the most critical and highly sensitive analytical measurements.  Examples of critical pH applications include: Reverse Osmosis (RO) systems in which a controlled feed of caustic solution is typically added to the feed stream in order to convert a portion of dissolved carbon dioxide into bicarbonate precipitate allowing for removal by the RO membrane. By Rafik H. Bishara, Steve Jacobs, and Dan Bell

  9. A Strategy For Optimizing Water Treatment Plant Performance Using Light Scatter Technologies
    6/7/2013

    Two new particle detecting technologies have been developed to help optimize filter performance at water treatment plants (WTP).

  10. A Comparative Study Of On-Line And Laboratory TOC Analyzers For Analysis Of Raw And Finished Drinking Water
    4/5/2013

    Total organic carbon (TOC) analysis is an important indicator of water quality throughout the drinking water treatment process. Raw source water is progressively treated in chemical coagulation, flocculation, sedimentation, and filtration steps to remove particulate matter and natural organic matter (NOM).