Drinking Water Analysis Application Notes

  1. Application Note: Using Real-Time Telemetry For Ecological Monitoring Of Coastal Wetlands
    2/3/2011
    The Grand Bay National Estuarine Research Reserve (NERR)in Mississippi is one of 27 protected estuarine reserves across the United States. By YSI
  2. Application Note: Water Flows From The Golden Hills Of California
    1/20/2010
    Each morning John Johnson drives the few miles from his smalltown home in northern California to the Center at Pardee Reservoir. Nestled among the foothills of the Sierra Nevada mountain range, the reservoir is a long 100 miles away from San Francisco Bay. By YSI
  3. Advances In Paper-Based Devices For Water Quality Analysis
    2/22/2017

    Water quality test strips have been around for decades. They are usually constructed from a porous media, including different types of paper, and undergo a color change when dipped into water containing the analyte of interest. These test strips have seen application in swimming pools, aquariums, hot tubs, remediation sites, and other commercial/environmental areas.

  4. ABB Aztec 600 Manganese Analyzer Optimizing Manganese Removal Efficiency
    11/15/2017

    The task of managing the quantity and quality of potable water is unimaginable without online instrumentation to help water utilities to measure, treat and deliver drinking water to consumers. ABB’s Aztec 600 colorimetric and ion-selective electrode (ISE) analyzers have been designed to measure the key parameters that affect water quality – aluminium, iron, manganese, phosphate, color, ammonia and fluoride.

  5. Dissolved Oxygen Measurement
    11/11/2013

    One of the most important measurements in the determination of the health of a body of water is its dissolved oxygen content. The quantity of dissolved oxygen in water is normally expressed in parts per million (ppm) by weight and is due to the solubility of oxygen from the atmosphere around us.

  6. Application Note: Low-Flow Sampling Of Water Quality Parameters Used In Determining Groundwater Stability
    1/20/2010
    In April 1996, the U.S. EPA developed and published a document entitled Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. The document states that “the most common ground water purging and sampling methodology is to purge wells using bailers or high speed pumps to remove 3 to 5 casing volumes followed by sample collection.” Adverse impacts can occur through this method affecting sample quality by increasing levels of turbidity. These problems can often be mitigated by using low-flow purging and sampling to reduce sampling-induced turbidity. By YSI
  7. Monitoring Aromatic Organics For Optimizing Coagulation
    2/1/2013

    With the increasing awareness about the negative effects of organics within the water and wastewater treatment process along with increasingly strict water quality regulations, the need for more effective organics removal is becoming more important.

  8. New Water Turbidity Measurement Technology — The US Experience
    2/3/2017

    The amount of insoluble matter present in drinking water is an essential quality indicator. Silt, sand, bacteria, spores, and chemical precipitates all contribute to the cloudiness or turbidity of water. Drinking water (DW) which is highly turbid can be unpalatable and unsafe. Consumption of even low concentrations of certain bacteria and other microorganisms can cause serious health effects. Consequently, an accurate and sensitive measurement of turbidity is vital for ensuring that drinking water is free of these contaminants.

  9. Accurately Measuring Network Leakage
    6/26/2015

    The pressures of supplying a growing global population mean that the world’s water supplies need to be managed more closely than ever.

  10. Application Note: YSI Water Quality Monitoring Buoys Help Connecticut DOT Protect The Housatonic River
    12/27/2005
    When replacement of the Sikorski Bridge spanning the Housatonic River was authorized, Paul Corrente and the Connecticut Department of Transportation (CT-DOT) set about the design and development of a water quality monitoring program to monitor the contractor’s in-water activities to insure full protection of the river from perturbation