News | April 12, 2024

Retention Ponds Can Deliver A Substantial Reduction In Tyre Particle Pollution

New research has analysed the mass of tyre wear particles found in drainage systems alongside some of the busiest roads in the UK

Retention ponds and wetlands constructed as part of major road schemes can reduce the quantities of tyre particles entering the aquatic environment by an average of 75%, new research has shown.

The study analysed samples collected alongside some of the busiest routes in South West England and the Midlands, many used by more than 100,000 vehicles each day.

Tyre particles were discovered in each of the 70 samples taken, confirming the findings of previous research which has shown them to pose a considerable environmental threat.

However, the presence of wetlands and retention ponds led to an average reduction of almost 75% in the mass of tyre wear particles being discharged to aquatic waters, thus providing protection for rivers and the ocean beyond.

The study also found that tyre wear particles significantly outweighed other forms of microplastics, such as plastic fibres and fragments, in the samples collected but that they were also removed in far greater quantities.

The researchers say that while the number of retention ponds and wetlands is quite small, in terms of the UK’s entire road network, the study has international significance as to the most effective ways to mitigate against the potential impacts of tyre pollution on a global scale.

They have also recommended that the maintenance of retention ponds and wetlands should be considered a major priority so that their apparent benefits, when it comes to reducing the flow of tyre particles from roads to rivers, continue to be realised.

The research is published in the Environmental Science and Pollution Research journal, and was carried out by scientists from the University of Plymouth and Newcastle University. It was funded by UK National Highways.

Dr Geoff Abbott, Reader in Organic Geochemistry in the School of Natural and Environmental Sciences (SNES) at Newcastle University, has previously developed a breakthrough method using pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) to detect tyre-derived particles in the environment. He explained:

The new research builds on previous studies involving researchers from Plymouth and Newcastle showing that tyre particles can be transported directly to the ocean through the atmosphere or carried by rainwater into rivers and sewers.

Professor Richard Thompson OBE FRS, Head of the International Marine Litter Research Unit, is senior author on the current study. He is also currently leading the ongoing TYRE-LOSS: Lost at Sea – where are all the tyre particles? project, which aims to highlight the effects of tyre pollution in the marine environment.


Source: University of Plymouth