SOURCE WATER RESOURCES

DRINKING WATER SOLUTIONS

  • SALINO® Pressure Center

    In small to medium-sized desalination systems the SALINO® Pressure Center proves that greatness has nothing to do with size. The 4-in-1 technology combines all relevant components needed for pressure boosting and energy recovery in one RO system.

  • Sewage Treatment Mini Train System: WWT-50

    The highly scalable newterra WWT-50 Sewage Treatment Mini Train System is designed for rapid mobilization to serve camps of 200 to 800 people. These efficient plants are configured in trains that allow modular expansion and easy redeployment of assets. Each base configuration consists of two 40' containers that provide 50 m3 (13,200 US gal) of treatment capacity – enough for 200 people. Supplementing the base system with one 40' Adder container doubles capacity to 100 m3 for up to 400 people.

  • ShaleFlow™: A Transportable, Modular Solution For Produced Water Reuse

    Veolia has developed ShaleFlow™, a cost-effective transportable solution for reuse of produced water and flowback water from hydraulic fracturing operations. This compact, modular system utilizes proven technologies designed to enable reuse with the flexibility to be moved as the field is developed.

  • ReFleX™ Efficiency

    For both disinfection and TOC-reduction applications, NeoTech Aqua Solutions’ patented ReFleX™ UV chamber technology represents the state-of-the-art in high-efficiency UV systems by reflecting over 99% of the UV we generate back into the water.

  • ReFlex™ Reverse Osmosis

    Desalitech's ReFlex Reverse Osmosis systems represent a new era of water treatment efficiency. With patented CCD technology, ReFlex systems guarantee maximum water savings and waste water reduction. Desalitech systems are making the best use of water resources, offering a recovery rate of up to 98 percent plus unmatched reliability and flexibility. ReFlex Reverse Osmosis typically reduces disposal costs by 50 percent to 75 percent and energy consumption by up to 35 percent.

  • Water Reuse: Solutions For Sustainability, Efficiency, And Resilient Water Systems

    What is water reuse?

    Water reuse is the process of treating and reclaiming water from various sources for practical purposes, including groundwater recharge, industrial applications, wetland restoration, agricultural irrigation, public access area uses, as well as drinking water applications. By reusing water, communities can reduce dependence on traditional water supplies, avoid costly imported water from 3rd party providers, and improve resilience in water systems. Thanks to progress in water treatment technology, along with economic and regulatory incentives, water recycling has become a cost-effective and sustainable solution to meet the growing demand for highly treated water and overcome supply shortages during droughts.

    There are three primary types of water reuse: Indirect Potable Reuse (IPR), Direct Potable Reuse (DPR), and Non-Potable. In IPR reuse systems, advanced treated water is either injected into an environmental buffer (groundwater, river, or reservoir) before being extracted again for use, whereas DPR is directly blended into the drinking water treatment plant or distribution system. Non-potable water is not intended for human consumption and can be used for irrigation, industrial processes, laundry, or toilet flushing.

    Advanced treatment technologies, such as membrane filtration, reverse osmosis, ultraviolet disinfection, ozonation, and advanced oxidation processes (AOP), play a crucial role in ensuring the quality and safety of reclaimed water.

    Why reuse water? 

    As water scarcity continues to rise, water reuse is an essential strategy for creating a more sustainable future. The use of recycled water reduces the demand for freshwater sources, which are becoming increasingly scarce due to population growth, climate change, and other factors.

    Here are some key benefits of water reuse:

    • Safeguard quality and resilience: Reused water is purified well beyond drinking water standards, improving resilience and ensuring quality for both potable and even non-potable purposes.
    • Uphold safety: Treatment processes like ozone and ultraviolet light can be used to disinfect or break down complex contaminants, ensuring water is pathogen-free and concentrations are below maximum contaminant levels (MCL).
    • Ensure cost savings and efficiency: After treating a waste stream to discharge level, it may require less treatment to bring it to reuse standards, making reuse not only environmentally responsible but also cost-effective in many scenarios and locations.
    • Conserve traditional water supplies: By reusing water, we can lessen our reliance on conventional water resources like rivers, lakes, and aquifers, thereby conserving them for future generations.
    • Reduce carbon footprint: Water reclamation is often more efficient than treating a raw water resource, which can lessen environmental impact.
    • Enable versatility and customization: Advanced treatment systems are tailored to meet specific needs for a variety of sectors, including industrial, urban, agricultural, and public access area uses.

    How to reuse water 

    The major aim of every reuse project is to minimize human health risk associated with the use or consumption of reclaimed water. While the exact treatment requirements depend upon the source water quality and the reuse purpose, to be cost-effective, the treatment must be energy efficient and have a high-water yield.

    An adequate treatment design plan depends on the application the water will be used in. In non-potable applications, normally filtration and disinfection will suffice, while potable reuse generally requires a combination of advanced treatment processes such as membrane filtration, reverse osmosis, disinfection, and/or advanced oxidation.

    Xylem has brands and solutions to fit every stage of the water reuse process: 

    • beginning with the transport of raw sewage and wastewater with Xylem brands like Flygt
       
    • to secondary treatment to remove most dissolved and suspended organic matter and nutrients with brands like Sanitaire and Envirex
    • to tertiary stages that remove residual particulate matter, nutrients, TDS, and nematode eggs with brands like Leopold and Davco
    • along with disinfection and advanced oxidation that inactivates pathogens, and breaks down trace constituents and emerging contaminants of concern with brands like Wedeco, ETS-UV, ATG UV Systems, Pacific Ozone, and Wallace & Tiernan 
    • and finally, digital solutions like YSI, OI Analytical, Xylem Vue that leverage remote monitoring, alerts, and data analytics for proactive and predictive maintenance

    Based on practical knowledge from decades of combined brand experience, thousands of installations worldwide, and strengths in powerful R&D innovation, our team looks at the entire wastewater process at your plant. We will work with your consulting engineer and State regulators to integrate the right technologies to meet your intended targets. Modular design makes it easy to fit your requirements now and easily expand to meet your future needs.

    Water reuse partnership 

    Though Xylem has teams of specialists, years of expertise, deep understanding of water regulations, and a broad solutions portfolio, we understand the complexities of water systems and the potential to partner with various water treatment experts. Xylem has partnered with hundreds of different firms around the globe to ensure the most efficient and viable water systems for communities and municipalities.

    Our goal is to thoroughly understand each project, determine the best methods, and customize optimal solutions that meet local regulations and requirements while delivering resiliency, quality, and cost savings.

    Let us be your partner in making every drop count. Contact us today to discuss your project needs.

DRINKING WATER VIDEOS

As aquatic invasive species continue to overwhelm hydropower, industrial, and municipal systems worldwide, this webinar explores why traditional filtration and chemicals are falling short—and how a dual-barrier UV approach is emerging as a proven, chemical-free alternative backed by global field results.