DRINKING WATER

GettyImages-157742535 molecule pfas Custom Tank Designs That Actively Manage PFAS Mass Transfer Zone (MTZ) — And Why It Matters More Than Ever

As utilities prepare for the pending 4-ppt PFAS drinking water MCL, many are discovering that legacy lead/lag designs—workhorses for decades when treating contaminants in the ppm and ppb range—simply are not optimized for the parts per trillion-level (ppt) precision PFAS demands.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

DRINKING WATER PRODUCTS

The EX-TEND® 200 joint is designed for pipelines that are subjected to expansion and contraction forces and is self restrained at full expansion.

The Force Balanced EX-TEND Expansion/Contraction Joint is designed to provide expansive or contractive movement to water pipelines subjected to linear movement. Unlike normal expansion joints, the Force Balanced EX-TEND does not generate an imparting thrust.

The SAF-X self-cleaning filter provides improved usability, easier maintenance and higher installation flexibility along with Amiad’s proven suction-scanning cleaning technology. SAF-X. Simply Better.

ULTRAPEN™ PT4 is Myron L Company’s ground-breaking new pocket tester for measuring free chlorine disinfecting power, free chlorine equivalent (FCE), and temperature. It is waterproof and designed for accuracy and simplicity for use in diverse water quality applications.

The patented U.S. Pipe TY-CON Conductive Gaskets are for use in Ductile-Iron pipe and fittings provided with the time proven TYTON JOINT®, and HDSS® restrained joint. TY-CON gaskets are intended to provide pipe joint conductivity for thawing service connections in cold climates.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

In the water-scarce desert Southwest, the agricultural, urban and environmental sectors are constantly competing for limited water. So how do you handle the fact that each stakeholder within those sectors wants something different in a water management strategy, for now and for the future?

The International Junior Science Olympiad 2017 (IJSO) was held in the Netherlands in December 2017. Xylem Inc. was official sponsor of the event, in which students aged 15 from 50 countries compete with one another on the topic Water & Sustainability.

Out of sight, the country’s underground water infrastructure is aging and failing. In this interview, AMERICAN’s Derek Scott and Maury Gaston discuss the problem, challenges facing cities, and the latest technologies for providing and protecting one of our most precious resources — water.

The YSI Pro2030 DO/conductivity water quality meter is ideal for any field application. The instrument is rugged and extremely simple to use.

In this episode of the Water Online Show, hosts Travis Kennedy and Kevin Westerling explore AI's transformative role in water utility operations with guest Dave Brown, Director of Maintenance at Eastern Municipal Water District (EMWD), which serves nearly a million customers across 682 square miles in Southern California.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.