DRINKING WATER
Beyond Meter Reads: Leveraging Temetra For Enhanced Customer Engagement And Conservation
Las Vegas Valley Water District is modernizing conservation efforts with Temetra, using high-resolution meter data to detect leaks sooner, engage customers, and secure water resources amid extreme drought conditions.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Meeting The Growing Demand For Large Size Degasification Modules
Sun Chemical Advanced Materials’ parent company, the DIC Corporation, is pleased to announce that it has expanded production capacity of its large size degasification module (LDM), SEPAREL® EF-120, by building a new plant.
-
Case Study: High Chemical & Blowdown Rates
The client used soft water make up on their large boiler system and was interested in reducing their operational water costs.
-
New AMR System Improves Efficiency, Conservation, Customer Service And Revenue For Coeur d'Alene
The City of Coeur d’Alene, Idaho, had been using a drive-by Automatic Meter Reading (AMR) system to read all of its meters since 2010, but according to Rob Stark, utility supervisor for the City of Coeur d’Alene Water Department, it wasn’t realizing the full benefits with its existing system.
-
How Advanced Pressure Monitoring Bolsters Risk Mitigation And Asset Management
Properly executing pressure management can attack pipeline failures on two fronts: by avoiding high pressures that exacerbate the problem and by providing the operational awareness needed for managing the most vulnerable spots. The insight provided by newer solutions helps accomplish this by going beyond advanced metering infrastructure as part of the building blocks for a smart utility network.
-
How To Design A Solution For A Temporary Water Or Vapor Treatment Project
The key to a successful water treatment or vapor extraction project is to understand the elements that can impact the treatment process, as well dispelling key myths about temporary treatment systems.
-
How pH Standards Impact The Accuracy Of Water Quality Measurements
When it comes to pH measurement in water and wastewater treatment, there are two focal points for the word ‘standard’ — one is a compliance-related state or federal water quality specification; the other is a specific fluid used as a calibration reference point to ensure pH instrumentation accuracy. Here is why both are important and how they affect the best pH measurement outcomes in both areas.
-
Testing For Microplastics: Challenges And Solutions
Learn about the methods and technologies currently used for testing microplastics, the limitations of those tests, and how to use them to get the most accurate measurements possible.
-
Future-Proof Your Water Meter Technology With AMI
Because you can’t track what you can’t measure, modern water solutions bridge the gap between the vision of secure water and the reality of existing infrastructure.
-
New Membrane Technology Handles High Solids, Aids Water Reuse
As global conditions place more stress on water resources, a great deal of attention is being paid to water reuse technologies, particularly those that facilitate the reuse of the next level of difficult-to-treat or highly variable raw water sources.
-
Recouping Revenue With Accurate Water Meters - Ira Township, MI
Ira Township in Fairhaven, MI used to have a variety of water meters with different reading technology—radio, touchread, automatic reading boxes and direct-read meters. On average, the meters were 19 years old and some were as old as 40 years. “With meters that old, we were not recouping all the revenue we should be,” says Chris Hiltunen, Ira Township Water & Department of Public Service Superintendent.
DRINKING WATER APPLICATION NOTES
-
The Active Control Program For Advanced UV Oxidation12/1/2025
This application note will explore how active control programs lower operational costs of compliant contaminant removal.
-
Advances In Paper-Based Devices For Water Quality Analysis2/22/2017
Water quality test strips have been around for decades. They are usually constructed from a porous media, including different types of paper, and undergo a color change when dipped into water containing the analyte of interest. These test strips have seen application in swimming pools, aquariums, hot tubs, remediation sites, and other commercial/environmental areas.
-
Simplify And Optimize Your Process With Level And Pump Control3/1/2022
Level controllers have evolved to meet today’s environmental challenges and industry demands. Learn how they support improved process management and, ultimately, a better bottom line.
-
Ion Exchange Resins And Activated Carbons For Better-Tasting Water12/18/2013
For many, access to good-tasting tap water is limited, and buying bottled water can be expensive. Simple pour-through jug filters offer a low-cost and effective alternative. Activated carbons, in conjunction with ion exchange products, produce drinking water that is absent of all industrial pesticides and contaminants.
-
The 'First Line Of Defense' In Protecting Membrane Filters8/9/2019
Multi-element, self-cleaning pretreatment filters optimize membrane filter life and production while minimizing maintenance and downtime.
-
Innovative Solutions To Drinking Water Decontamination In Small And Medium Treatment Plants9/21/2017
Air stripping technology effectively removes VOCs, THMs, and CO2 for improved adherence to water quality regulations.
-
Real-Time Water Quality Data For Agriculture9/23/2020
We arm farmers with mission-critical water data to help enhance crop yield and taste. KETOS delivers valuable insights for fluctuations in deficiency and toxicity.
-
Leak Detection On Water Distribution Network Using Clamp-On Flowmeters5/22/2023
A global engineering company realized that their leak identification methods were time consuming and expensive, and so began to explore alternative solutions, such as ultrasonic flow meters.
-
Dissolved Oxygen Measurement11/11/2013
One of the most important measurements in the determination of the health of a body of water is its dissolved oxygen content. The quantity of dissolved oxygen in water is normally expressed in parts per million (ppm) by weight and is due to the solubility of oxygen from the atmosphere around us.
-
The Basics: ORP and Free Chlorine Monitoring5/13/2014
Oxidation Reduction Potential or Redox is the activity or strength of oxidizers and reducers in relation to their concentration. Oxidizers accept electrons, reducers lose electrons. Examples of oxidizers are: chlorine, hydrogen peroxide, bromine, ozone, and chlorine dioxide. Examples of reducers are sodium sulfite, sodium bisulfate and hydrogen sulfide. Like acidity and alkalinity, the increase of one is at the expense of the other.
LATEST INSIGHTS ON DRINKING WATER
-
Learn how the Mustang Bayou Service Area (MBSA) Water System Improvements project delivered a fast-tracked, multi-phase response to rapid development and critical capacity challenges in one of the Missouri City’s fastest-growing regions.
-
As water systems grow more complex and climate patterns shift, Legionella is emerging as one of the most persistent and underestimated risks in the built environment. The threat to public health from Legionnaires' disease will likely further escalate unless decisive action is taken.
-
The city of Jackson faced a water crisis that went beyond the tap. What began as an ambitious plan to modernize its water metering infrastructure in 2014 became a logistical and financial nightmare, costing the city millions in lost revenue and declining public trust. Metering as a Service (MaaS) offered the city an alternative option.
-
There has been an abundance of funding available to address the estimated 9.2 million lead service lines currently deliver drinking water to homes, businesses, schools, and unsuspecting citizens throughout the United States. So it is disheartening to realize that millions of lead water lines are still delivering water to citizens.
-
This Q&A follows the Webinar: Beaverton's New AMI Solution Checks Every Box: Operations, Billing, Service, & Savings hosted by Water Online on October 21, 2025. The webinar featured the leadership team from Beaverton Water Division as they discussed lessons learned across operations, billing, and customer service, offering a 360-degree perspective on implementing and managing an AMI system.
-
Amid the AI-fueled gold rush, more leaders are beginning to pay attention to the short- and long-term natural resource concerns, especially around all the water needed to keep data centers running.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.