DRINKING WATER

WOL_iowa-park-smartball_385x250 Rural North Texas Community Cuts Non-Revenue Water By 42% With Pipeline Leak Detection Technology

Discover how a city solved its non-revenue water challenge by rapidly pinpointing three hard-to-find leaks in 13 miles of aging pipeline using a free-swimming acoustic tool.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

  • Determination Of EN15662:2008 - Determination Of Pesticide Residue In Food Of Plant Origin, By An Automated QuEChERS Solution
    9/24/2014

    Pesticide residue laboratories are required to undertake analyses of an ever increasing number of samples. The analyses typically involve use of multi-residue methods (both GC-MS and LC-MS) to test for over 500 pesticide residues.

  • Oxidation Reduction Potential
    10/29/2021

    What is ORP? Oxidation Reduction Potential or Redox is the activity or strength of oxidizers and reducers in relation to their concentration. Oxidizers accept electrons, reducers lose electrons. Examples of oxidizers are: chlorine, hydrogen peroxide, bromine, ozone, and chlorine dioxide. Examples of reducers are sodium sulfite, sodium bisulfate and hydrogen sulfide. Like acidity and alkalinity, the increase of one is at the expense of the other.

  • Organics Aren't Invisible: A Guide for Simple Online Monitoring
    5/13/2019

    Control of dissolved organics has been one of the highest priority concerns for most water treatment plants for over 20 years. Organics monitoring is an even more critical issue today in the face of more stringent regulations and concerns around trace organics, emerging contaminants, and even counter-terrorism or water security. Despite the critical need, many plants still rely primarily on turbidity for monitoring and process control.

  • Bottled Water Industry: Liquid Analytical Solutions
    11/10/2013

    Americans consume more than 9.1 billion gallons of bottled water annually - an average of twenty nine gallons per person every year. 

  • Pile Cloth Media Filtration Removes 97% Of Microplastics From Wastewater
    12/6/2023

    Learn about filtering microplastics from industrial wastewater prior to discharge, and how this is one way to effectively reduce the volume of this waste material from entering our surface water.

  • How To Install A Submersible Pump In Discharge Tubes
    11/28/2012

    In the fields of water and waste water technology, submersible pumps represent a viable economic and technical alternative to conventional, dry-installed pumps. In particular, they offer a number of handling advantages during maintenance and installation work.

  • Groundwater Remediation
    12/1/2020

    Good quality groundwater is an important natural resource. It provides drinking water for the public as well as process water for industrial applications. Groundwater can become contaminated through a number of ways including improper handling of process chemicals or disposal of wastes.

  • Real-Time Conductivity Monitoring Estimates Chloride Levels In Minnesota Watershed By Using The Aqua TROLL 200
    11/18/2011
    Monitoring deicing chemical levels can help researchers, city governments, and regulatory agencies understand runoff impacts on surface water, groundwater, and surrounding environments.
  • Scrubber Application
    1/27/2022

    This customer supplies district heating and electricity for the region of Sønderborg. For one of their waste applications a MAG meter failed within 6 months, and was successfully replaced with a Panametrics Aquatrans AT600.

  • Remote Monitoring And Maintenance Through Digitalization
    3/17/2020

    Siemens offers to our customers the ability to make both process measurements, and to remotely monitor the activity and health of instrumentation, whether you have a SCADA, PLC or DCS system, or not. By utilizing Siemens’ ability to offer unparalleled flow, level, pressure, temperature, and weight measurement we can provide a broad range of process measurements and offer unequaled monitoring of the health and performance of those products.

DRINKING WATER PRODUCTS

The SoundPrint® AFO Continuous Remote Monitoring Platform is a proactive pipeline monitoring solution that uses acoustic fiber optic (AFO) technology to detect structural deterioration in prestressed concrete cylinder pipelines (PCCP). By continuously listening for wire breaks and other anomalies, the system enables utilities to assess pipeline health in real time, reducing the risk of catastrophic failures and extending asset life. Data is securely transmitted to a cloud-based dashboard, providing operators with actionable insights for maintenance and capital planning.

FLEX-TEND Flexible Expansion Joints are designed to protect water or wastewater pipeline systems from the stresses produced by ground motion or shear either from seismic activity or gradual soil subsidence.

Blue-White’s Polysulfone Flow Meters have durable meter bodies with excellent heat and chemical resistance.  Units for use in UltraPure environments are available.

The PanaFlow gas meter system consists of two models— the one-path PanaFlow Z1G and the two-path PanaFlow Z2G. Both meters offer a high-performance, yet affordable solution for a variety of gas flow applications.

The PHOSPHAX sc Phosphate Analyzer is environmentally controlled for rugged, outdoor installations, provides a wide measurement range for a variety of wastewater and drinking water applications (e.g. in the activated sludge basin, for phosphate elimination and my more), and comes with the fully featured "Plug & Play" digital controller. 

Recordall® Compound Series meters combine two metering technologies in one innovative package. A positive displacement chamber measures low flow, while a turbine chamber records high flow. These meters are an ideal choice for facilities that experience rapid and wide fluctuations in water demand, such as hospitals, universities, residential complexes and manufacturing or processing facilities.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

NASA scientists used tree rings to understand past droughts and climate models incorporating soil moisture data to estimate future drought risk in the 21st century.

How much water does it take to make a hamburger? How about to manufacture a car? Having experienced growing up with limited resources living in a refugee camp in India, Anil Ahuja is leading a movement to design sustainable cities and systems that protect the earth and the people who live on it.

Aqua wants you to know the 411 on lead exposure

The Eclipse i-Series model #9800i-GENESIS is the newest Intelligent Flushing & Monitoring Station Kupferle offers to maintain safe residual levels and remove DBPs from consumers' water. This permanently installed station incorporates a built-in chlorine analyzer to measure and record disinfectant residual levels based on a programmed sampling schedule.

Water Research Foundation at the Silicon Valley Advanced Water Purification Center talking with Jim Fiedler and Andrew Salveson about upcoming WRF Direct Potable Reuse research projects.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.