DRINKING WATER

Water Algae Cells-GettyImages-1328660998 Using Biological Competition To Suppress Algae Growth

Effective algae control shifts the focus from removal to nutrient management. By leveraging bioaugmentation to outcompete algae for nitrogen and phosphorus, facilities can stabilize pH levels and dissolved oxygen, ensuring long-term pond clarity and consistent wastewater treatment performance.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

  • Bringing Efficiency And New Confidence To BOD₅ Analysis
    2/4/2013

    Biochemical Oxygen Demand (BOD) analysis is the test everyone loves to hate—and for compelling reasons.

  • SensyMaster Thermal Mass Flowmeter
    8/3/2021

    SensyMaster helps to improve the operating costs of the most cost intensive process in sewage plants: Aeration. High-measuring performance and state of the art technology helps customers increase plant efficiency.

  • Remote Monitoring And Maintenance Through Digitalization
    3/17/2020

    Siemens offers to our customers the ability to make both process measurements, and to remotely monitor the activity and health of instrumentation, whether you have a SCADA, PLC or DCS system, or not. By utilizing Siemens’ ability to offer unparalleled flow, level, pressure, temperature, and weight measurement we can provide a broad range of process measurements and offer unequaled monitoring of the health and performance of those products.

  • Preliminary Assessment Of Water Quality In Riviera Grise Near Port-Au-Prince, Haiti
    10/17/2012

    The Riviera Grise drains water from the Cul-de-Sac watershed, Haiti, which covers most of the rural areas along the flood plains and areas that extend into steep hillsides. It also covers urban areas of Port-Au-Prince, the capital city of Haiti.

  • How Activated Carbon Works To Purify Air And Water
    10/31/2019

    The first step is to define the performance limiting factors in the application. For this application, most of the adsorber is used for MTBE adsorption in the ppb concentration range. Adsorption of BTEX, TBA, or humic acids or other total organic carbon (TOC) components are removed by the front end of the column.

  • The Process Of Deionizing Water
    10/29/2021

    Years ago, high purity water was used only in limited applications. Today, deionized (Dl) water has become an essential ingredient in hundreds of applications including: medical, laboratory, pharmaceutical, cosmetics, electronics manufacturing, food processing, plating, countless industrial processes, and even the final rinse at the local car wash.

  • Hydrogen Sulfide Removal From Water Using AquaSorb® CX-MCA
    2/19/2014

    The “rotten egg” odor in some water supplies is caused by sulfide in water. Sulfide can be treated using oxidation techniques, the goal being to convert the sulfide to high oxidation state species such as sulfate to eliminate the taste and odor concerns. Traditional oxidation techniques such as ozone and chlorine can be used, but can be expensive due to the equipment required to add and monitor the oxidant, and can lead to by-products such as trihalomethanes (THMs), which are regulated in drinking water supplies.

  • Water Determination In Liquefied Petroleum Gas Using GC BID And Ionic Liquid Column Watercol™
    6/28/2018

    Water in petrochemical feedstocks can cause problems for processors. Freezing of pipe lines and valves and poisoning of expensive catalysts are just a few examples.

  • Hemodialysis Patient Health
    10/29/2021

    Controlling dialysate quality is critically important to hemodialysis patient health. Complications as minor as nausea and fatigue or as severe as metabolic acidosis and sepsis can result if dialysate composition is incorrect. All the factors that ultimately affect dialysate composition must therefore be carefully monitored and controlled: proper proportioning and mixing of concentrates with water; the quality of water mixed with concentrates to form dialysate; and the quality of water used in the reprocessing of hemodialyzers, system maintenance and disinfection.

  • MEGA-STOP Bell Protection System Aids In Pipe Joint Assembly
    4/13/2021

    Water and wastewater piping come in a variety of materials, joints, and diameters. They can meet a multitude of demands and needs for the country's infrastructure.

DRINKING WATER PRODUCTS

The OPTISONIC 7300 Biogas is an ultrasonic flowmeter for low pressure biogas, landfill and sewage gas applications. The flowmeter is ideally suited to measure biogas with a high CO2 content as well as small amounts of other media like H2S, nitrogen, hydrocarbons or condensation water. Its corrosion resistant titanium transducers provide a strong ultrasonic signal into the gas. The signal processing of the meter allows a better detection of small, strongly dampened acoustic signals.

Designed to transform mechanical meters into communication data points, Itron's Cyble communication modules enable remote reading and monitoring of water meters on-site events. 

ECT2’s SORBIX™ H Series is designed for applications requiring flow rates of up to 1,357 GPM per vessel, such as drinking water systems. Additional vessel trains can be added to achieve any required flow rate.

Ozone treatment for water and wastewater has been utilized successfully for several decades and continues to be a viable disinfection solution for both municipal and industrial plants, worldwide.

The presence of active pharmaceutical ingredients, radio-opaque substances and endocrine disrupting chemicals in raw water sources is a relatively new emerging issue in relation to drinking water quality. However, the influence of pollutants on health and general well-being is becoming apparent with the incidence of carcinoma increasing and fertility rates being affected. A solution for the efficient removal of these substances from water use by production sites is required.

The DR3900 is a benchtop visible spectrum (320 - 1100 nm), split beam spectrophotometer with over 220 pre-programmed methods optimized for laboratory water analysis. With your daily routine of water analysis in mind, the DR3900 spectrophotometer is optimized for safe processes and accurate results.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

See how SIWA MDM user experience is easy with various billing tiles and screens to help optimize the billing processes. Quickly see billing readiness, request activity in a highly configurable dashboard.

The Orange County Water District (OCWD) has long been an innovative leader in indirect potable reuse. An integral component of its Groundwater Replenishment System (GWRS) – a 100 million gallon per day advanced water purification facility – is reverse osmosis membrane technology.

Lead poisoning water service lines are turning up around the globe at an alarming rate leaving millions angry. ePIPE's innovative technology creates a new pipe barrier inside the service lines eliminating water contact with the lead service lines.

Water utilities need reliable data to meet regulatory demands, manage operations, and deliver excellent customer service. Master Meter’s Allegro AMI and Allegro Mobile technologies offer smart, scalable solutions to support these needs. Allegro AMI provides hourly data on consumption, tampering, and leaks, automatically sent to the utility office.

The recoating of a potable water tank in Lancaster, PA, included an already tight timeframe and several challenges that cause delays.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.