DRINKING WATER
Custom Tank Designs That Actively Manage PFAS Mass Transfer Zone (MTZ) — And Why It Matters More Than Ever
As utilities prepare for the pending 4-ppt PFAS drinking water MCL, many are discovering that legacy lead/lag designs—workhorses for decades when treating contaminants in the ppm and ppb range—simply are not optimized for the parts per trillion-level (ppt) precision PFAS demands.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Fractional Electrodeionization (FEDI) Technology For RO Permeate Polishing And Demineralization
Sabine Pass, a large LNG refinery in the U.S., required a membrane desalination solution to cater to its extensive process water needs in order to produce a large amount of liquefied natural gas for export.
-
Hendersonville Water Treatment Plant Features Innovative Disinfection System
Hendersonville Utility District (HUD) serves one of the most populous suburbs of Nashville, Tennessee.
-
Two Tennessee Water Utilities Discover ALPHA™ Joint Makes Installations Faster, More Efficient
From Nevada to South Dakota and now Tennessee, cities across the U.S. are installing the AMERICAN Flow Control® ALPHA restrained joint, because it saves labor, time and money. Introduced almost a year ago, ALPHA is used on AMERICAN’s Series 2500 4- to 12-inch Resilient Wedge Gate Valves and American-Darling and Waterous fire hydrants.
-
Condition Assessment At Spring Creek Ranch
Learn why Spring Creek Ranch chose Echologics to survey 1.7 miles of 12-inch ductile iron pipe, utilizing the ePulse® method to assess the condition of the over 40-year-old pipes.
-
How To Minimize Downtime In Ultrapure Water Systems
As ultrapure water becomes increasingly indispensable, new technologies redefine industrial standards, fostering resilience and competitiveness in a rapidly evolving global market.
-
The Role Of Reverse Osmosis (RO) Membranes In The Battle Against PFAS
As the global concern over per- and polyfluoroalkyl substances (PFAS) contamination continues to escalate, innovative solutions are becoming increasingly pivotal in the pursuit of clean and safe water resources. The City of Rome Water and Sewer Division conducted a comprehensive pilot to identify a treatment process for removing PFAS from the water supply, including high recovery reverse osmosis technologies.
-
When And Where To Use Piping Restraints
Read about standards to follow and techniques to apply for restraining pipe connections in specific conditions and environments.
-
A Utility's Guide To Evaluating Network-As-A-Service
The following pages provide a comprehensive picture of NaaS, including the key questions that will help determine which solution is right for your utility.
-
Case Study: Chemplast Chooses Aquatech's HERO™ & ZLD The Chemplast Mettur plant uses the Cauvery River as their main fresh water source. A strong industrial growth in recent years has resulted in water scarcity in the region. Industries are also required to follow strict environmental norms for discharging effluents. The intent of a Waste Water Treatment Plant was to have complete treatment, recycle and reuse of the combined waste water streams to reduce intake from the Cauvery River while not discharging any liquid waste streams. By Aquatech International Corporation
-
Which Gate Valve Is Best For Today's Waterworks Systems?
Outdated specifications can sometimes lead to confusion regarding which gate valve should be used. Understanding how the standards have evolved and why can help utilities understand the source of this confusion.
DRINKING WATER APPLICATION NOTES
-
Biofouling Control In Cooling Towers With A Halogen Stabilizer10/22/2020
Biofouling in cooling towers is undesirable because it can reduce heat transfer efficiency, restrict water flow, and accelerate corrosion rates. Of even greater concern is the fact that pathogen growth in cooling towers can lead to disease transmission. Given the favorable growth environment of a cooling tower, these microorganisms can reproduce, proliferate and form complex biofilm communities. Legionella bacteria, which cause Legionnaires’ disease, are one of the greatest concerns from a public health standpoint because infections are often lethal and cooling towers are the most frequently reported non-potable water source of Legionnaires’ disease outbreaks (Llewellyn 2017).
-
Operations And LRV Calculations At Southwest Pipeline Project Drinking Water Treatment Facility4/14/2016
This presentation will discuss the operation of a 4 MGD pressurized two-stage Ultrafiltration (UF) plant over a 14 month period at the Oliver-Mercer-North Dunn (OMND) Drinking Water Treatment Facility, North Dakota.
-
Leak Detection On Water Distribution Network Using Clamp-On Flowmeters5/22/2023
A global engineering company realized that their leak identification methods were time consuming and expensive, and so began to explore alternative solutions, such as ultrasonic flow meters.
-
Analysis Of Pesticide Residue In Spinach Using The AutoMate-Q40 An Automated QuEChERS Solution10/16/2014
QuEChERS is a Quick-Easy-Cheap-Effective-Rugged-Safe extraction method that has been developed for the determination of pesticide residues in agricultural commodities.
-
Optimization Of Water Treatment Using Zeta Potential5/27/2020
Drinking water in the US and developed nations of the world is treated to remove contamination of foreign materials, both mineral and organic.
-
Ultrapure Water For Determination of Toxic Elements In Environmental Analyses4/10/2018
In this paper the importance of reagent water quality for toxic element environmental analyses is discussed, and the suitability of fresh ultrapure water produced using MilliporeSigma water purification systems for ICP-OES and ICP-MS trace element analyses in environmental laboratories is demonstrated.
-
Phosphate In Groundwater And Surface Water: A Rapid And Reliable Determination Method Using The Photometric Spectroquant® Test1/31/2019
Phosphorus is an essential element for organisms and plants. In natural, uncontaminated waters, it occurs as organically bound phosphate, condensed phosphates or as orthophosphate — often referred to by its chemical formula PO4-P. The small quantity of phosphorus present in natural waters does not promote the growth of plants. However, a rise in the concentration of phosphorus results in the proliferation of algae, which leads to the eutrophication of the water body.
-
Determination Of Pesticide Residues In Honey, By An Automated QuEChERS Solution9/17/2014
The QuEChERS (Quick-Easy-Cheap-Effective-Rugged-Safe) sample extraction method was developed for the determination of pesticide residues in agricultural commodities.
-
Background And Summary Of Tests For The 2000PV Restraint4/13/2021
The 2000PV is a restraint for PVC pipe and the standardized mechanical joint. This product is the result of years of testing and evaluation and its performance has been proven by thousands of hours of proof tests, as well as third-party evaluations. This report describes the 2000PV through the 12" size.
-
How To Install A Submersible Pump In Discharge Tubes11/28/2012
In the fields of water and waste water technology, submersible pumps represent a viable economic and technical alternative to conventional, dry-installed pumps. In particular, they offer a number of handling advantages during maintenance and installation work.
LATEST INSIGHTS ON DRINKING WATER
-
Beaverton Water Division’s transition to Kamstrup AMI and acoustic leak detection is modernizing meter reading, reducing infrastructure costs, improving leak identification, and streamlining operations as deployment progresses.
-
Learn how the Mustang Bayou Service Area (MBSA) Water System Improvements project delivered a fast-tracked, multi-phase response to rapid development and critical capacity challenges in one of the Missouri City’s fastest-growing regions.
-
As water systems grow more complex and climate patterns shift, Legionella is emerging as one of the most persistent and underestimated risks in the built environment. The threat to public health from Legionnaires' disease will likely further escalate unless decisive action is taken.
-
The city of Jackson faced a water crisis that went beyond the tap. What began as an ambitious plan to modernize its water metering infrastructure in 2014 became a logistical and financial nightmare, costing the city millions in lost revenue and declining public trust. Metering as a Service (MaaS) offered the city an alternative option.
-
There has been an abundance of funding available to address the estimated 9.2 million lead service lines currently deliver drinking water to homes, businesses, schools, and unsuspecting citizens throughout the United States. So it is disheartening to realize that millions of lead water lines are still delivering water to citizens.
-
This Q&A follows the Webinar: Beaverton's New AMI Solution Checks Every Box: Operations, Billing, Service, & Savings hosted by Water Online on October 21, 2025. The webinar featured the leadership team from Beaverton Water Division as they discussed lessons learned across operations, billing, and customer service, offering a 360-degree perspective on implementing and managing an AMI system.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.