DRINKING WATER
Custom Tank Designs That Actively Manage PFAS Mass Transfer Zone (MTZ) — And Why It Matters More Than Ever
As utilities prepare for the pending 4-ppt PFAS drinking water MCL, many are discovering that legacy lead/lag designs—workhorses for decades when treating contaminants in the ppm and ppb range—simply are not optimized for the parts per trillion-level (ppt) precision PFAS demands.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Case Study: High Chemical & Blowdown Rates
The client used soft water make up on their large boiler system and was interested in reducing their operational water costs.
-
How Silver Creek Water Corporation Improved Water Quality In Their Storage Tanks
The Silver Creek Water Corporation performed a 15-month self-enacted case study to determine if tank mixing improves water quality to the customer tap.
-
The Importance Of Control Valve Training
By understanding how to implement a pressure management program, the amount of recoverable water losses can be staggering, as well as have a significant reduction in pipe breakages.
-
Inside The Technology: 3M Liqui-Cel Membrane Contactors
While dissolved gas can give beverages distinctive flavors and fizz, it can also corrode boiler equipment and cause problems in microelectronics. With 3M’s advanced gas transfer membrane technology, you have the power to control dissolved gases with precision. Dive in to learn the ins and outs of 3M Liqui-Cel technology.
-
How Water Utilities Can Transform Fragmented Data Into A Unified Asset For Operational Excellence
Water utilities stand at the intersection of legacy infrastructure and digital innovation. As demand grows and environmental pressures mount, utilities face the challenge of transitioning from siloed, fragmented data systems to cohesive platforms that unlock the full potential of digital transformation.
-
Online TOC Analysis In The Drinking Water Treatment Process
In 1974 the Congress of the United States passed Public Law 93-523; the Safe Drinking Water Act (SDWA) to protect public health by regulating the nation’s drinking water supply and protecting sources of drinking water. The SDWA first went into effect on June 24, 1977 and has been amended multiple times.
-
Australian City Installs Microclor On‐Site Sodium Hypochlorite Generation System
Bathurst is the home of the Bathurst 1000 Race, the largest NASCAR-style “touring car” race in Australia. On race day, tens of thousands of additional visitors tax the capacity of the Bathurst 5 million-gallon-per- day wastewater treatment plant. The diligence and capability of the treatment staff allows the plant to meet the challenge every year.
-
Jar Testing Gets An Upgrade
Jar testing is a common laboratory procedure used at water and wastewater treatment plants. In a set of beakers a defined amount of water is mixed with varying amounts of coagulant, and through observation by a trained operator the optimal amount of coagulant can be determined.
-
The "Design For Autonomous Net-Zero Water Buildings" Project Funded By NSF
The students at the University of Miami will know firsthand the importance of rethinking the way we handle wastewater and water with a Net-Zero water treatment system on site. The project showed the viability and feasibility to take buildings off the water grid to provide water recycling and how it can be achieved without raising the cost of high quality water.
-
Cobb County Expands “Excellent Production Of Potable Water” With ClorTec® DN OSHG System
De Nora’s ClorTec® DN OSHG systems feature market-driven innovations including robust PVC/FRP casings with end view ports, remote monitoring and control, and simple operation and maintenance with 100% access to every component. Systems from 12-3,000 lbs/day produce a guaranteed .8% hypochlorite concentration and feature the DSA® bipolar electrodes pioneered by De Nora. Read about how one community expanded their “excellent production of potable water” with the new ClorTec® DN OSHG System.
DRINKING WATER APPLICATION NOTES
-
Determination Of Hexanal In Foods Utilizing Dynamic Headspace4/9/2015
Hexanal is one of many well-documented aromatic components that contribute to flavor and aroma in common consumer food products containing omega-6 fatty acids. Hexanal content is also used to measure the oxidative status of foods rich in omega-6 fatty acids.
-
Scrubber Application1/27/2022
This customer supplies district heating and electricity for the region of Sønderborg. For one of their waste applications a MAG meter failed within 6 months, and was successfully replaced with a Panametrics Aquatrans AT600.
-
Application Note: Desalination Plants: YSI Instruments Monitor Flow & Water Quality At Multiple Stages2/3/2011Desalination is the process of removing salt from sea water or brackish river or groundwater to make potable water. By YSI
-
Application Note: Miami Conservancy District Uses Nitrate Screening As Conjunctive Management Tool1/20/2010Tasked with monitoring a watershed covering nearly 4,000 square miles, almost 2,300 miles of rivers and streams, and a huge aquifer that provides drinking water for more than 1.2 million people, water quality monitoring specialists at the Miami Conservancy District (MCD) in Dayton, Ohio, have their hands full. By YSI
-
Ultrapure Water For Determination of Toxic Elements In Environmental Analyses4/10/2018
In this paper the importance of reagent water quality for toxic element environmental analyses is discussed, and the suitability of fresh ultrapure water produced using MilliporeSigma water purification systems for ICP-OES and ICP-MS trace element analyses in environmental laboratories is demonstrated.
-
Operations And LRV Calculations At Southwest Pipeline Project Drinking Water Treatment Facility4/14/2016
This presentation will discuss the operation of a 4 MGD pressurized two-stage Ultrafiltration (UF) plant over a 14 month period at the Oliver-Mercer-North Dunn (OMND) Drinking Water Treatment Facility, North Dakota.
-
Reduced Bore Electromagnetic Flowmeter10/29/2021
Being able to accurately measure both the quantity and rate of water passing through a water distribution system is crucial to gain an informed understanding of overall efficiency. As such, achieving a measurement that is exact as possible can have a significant impact on key areas. This includes supply planning, maintenance, resource deployment, leakage detection and the overall environment.
-
The Active Control Program For Advanced UV Oxidation12/1/2025
This application note will explore how active control programs lower operational costs of compliant contaminant removal.
-
Secret To Disinfection Monitoring For High Chlorine Residual Wastewater Applications8/2/2015
Some wastewater applications require chlorine residuals greater than can be effectively monitored using DPD due to the oxidation of the Wurster dye to a colorless Imine. Such applications include industrial wastewater processes that inherently have a high chlorine demand thereby requiring a more robust monitoring method.
-
MEGA-STOP Bell Protection System Aids In Pipe Joint Assembly4/13/2021
Water and wastewater piping come in a variety of materials, joints, and diameters. They can meet a multitude of demands and needs for the country's infrastructure.
LATEST INSIGHTS ON DRINKING WATER
-
Beaverton Water Division’s transition to Kamstrup AMI and acoustic leak detection is modernizing meter reading, reducing infrastructure costs, improving leak identification, and streamlining operations as deployment progresses.
-
Learn how the Mustang Bayou Service Area (MBSA) Water System Improvements project delivered a fast-tracked, multi-phase response to rapid development and critical capacity challenges in one of the Missouri City’s fastest-growing regions.
-
As water systems grow more complex and climate patterns shift, Legionella is emerging as one of the most persistent and underestimated risks in the built environment. The threat to public health from Legionnaires' disease will likely further escalate unless decisive action is taken.
-
The city of Jackson faced a water crisis that went beyond the tap. What began as an ambitious plan to modernize its water metering infrastructure in 2014 became a logistical and financial nightmare, costing the city millions in lost revenue and declining public trust. Metering as a Service (MaaS) offered the city an alternative option.
-
There has been an abundance of funding available to address the estimated 9.2 million lead service lines currently deliver drinking water to homes, businesses, schools, and unsuspecting citizens throughout the United States. So it is disheartening to realize that millions of lead water lines are still delivering water to citizens.
-
This Q&A follows the Webinar: Beaverton's New AMI Solution Checks Every Box: Operations, Billing, Service, & Savings hosted by Water Online on October 21, 2025. The webinar featured the leadership team from Beaverton Water Division as they discussed lessons learned across operations, billing, and customer service, offering a 360-degree perspective on implementing and managing an AMI system.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.