DRINKING WATER

Thermal reactivation of granular activated carbon is a proven and scalable method to achieve >99.9% destruction removal efficiency for PFAS. This process fully restores the carbon for reuse, providing a sustainable solution that breaks the cycle of "forever chemicals."
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Sustainable Water Management Solutions
Explore how utilities can deal with non-revenue water, or water that has been produced and is lost before it reaches the customer.
-
The Challenge Of Flow Disturbances On Meter Accuracy
Accurately measuring flow is critical for water utility operations. Also, regulatory agencies mandate flow monitoring and require annual calibration of meters. But even a meter in perfect condition and properly calibrated can read inaccurately. Flow disturbances are a common cause of accuracy and repeatability errors.
-
Project Profile: Lakeview Estates Community Durand, MI AD26 Arsenic, Iron & Manganese System
In August, 2007 AdEdge Technologies, Inc. was selected among other vendors by Tri-County Drilling to supply an arsenic, iron, and manganese treatment system for the Lakeview Estates MHP in Durand, Michigan. By Adedge Technologies Inc.
-
Earth Day: Alabama's Iron And Steel Manufacturing Contributes To Our Environment
I was in fifth grade on the first Earth Day. There was an abandoned earth mover in the woods near my elementary school, and Mrs. Fields’ social studies class painted it with bright colors to improve our visual environment. It was 1970, Richard Nixon was President, and later that year he would establish the Environmental Protection Agency.
Little did I know then that Earth Day is about science, there are economics within environmentalism, and I would have a career promoting stewardship of the earth.
-
Indirect Potable Reuse With UV-Oxidation - Big Spring, Texas
In an effort to reduce reliance on dwindling surface and groundwater supplies in Texas, the Colorado River Municipal Water District constructed a new Raw Water Production Facility in Big Spring.
-
Reducing Water Loss In Oak Park, IL: A Data-Driven Approach
Discover how the Village of Oak Park faced persistent water loss by implementing a systematic leak detection and mitigation approach.
-
High Recovery Reverse Osmosis Water Treatment For Industrial, Agricultural, And Municipal Applications
Industry accounts for nearly 60 percent of fresh water withdrawals in the developed world and agriculture consumes 70 percent of fresh water supplies globally, according to UNESCO.
-
From Conventional To Smart: Lessons From Building One Of The Largest Smart Meter Networks In Europe
Digitalization paves the way for cost reduction in water utilities, thanks to greater process efficiency. To achieve success, both technology and the people factors need to be taken into account.
-
Unseen Connections: How Non-Revenue-Water Is Linked To The Hidden Hazard Of Sinkholes
This article explores how NRW can contribute to the formation of sinkholes, and why addressing non-revenue water is vital for preventing these potentially dangerous occurrences.
-
EPA Researchers Explore Technology To Destroy PFAS
Per-and polyfluoroalkyl substances, otherwise known as PFAS, are a large group of human-made organic compounds with properties that make many of them toxic and persistent in the environment. PFAS have been manufactured and used since the 1940s in items such as fire-fighting foams, adhesives, cosmetics, paper products, and stain and water repellants. Until now, researchers have been unable to destroy PFAS in a way that has potential for larger scale use.
DRINKING WATER APPLICATION NOTES
-
Bottled Water Industry: Liquid Analytical Solutions11/10/2013
Americans consume more than 9.1 billion gallons of bottled water annually - an average of twenty nine gallons per person every year.
-
Improved Determination Of Volatile Organic Compounds In Water By SPME And GC/MS6/21/2018
The analysis of water for volatile organic compounds is important due to their toxicity. The current methods for this determination lack of sensitivity, selectivity or capability for automation. This paper presents the new ISO 17943 Standard using Solid Phase Microextraction (SPME) and GC/MS. The sample preparation by SPME enables limits of detection and easy automation of the whole method. GC/MS provides the required sensitivity and selectivity. This ISO Standard was validated by an interlaboratory trial, which results confirm the outstanding performance for this method.
-
FLEX-TEND® Flexible Expansion Joints, Features And Specifications12/3/2020
FLEX-TEND® flexible expansion joints are designed to protect structures and pipelines from differential movement whether this movement is earthquake induced or the gradual motion of soil subsidence. This bulletin offers a concise listing and discussion of the important features and materials of the double and single ball assemblies.
-
Phosphate In Groundwater And Surface Water: A Rapid And Reliable Determination Method Using The Photometric Spectroquant® Test1/31/2019
Phosphorus is an essential element for organisms and plants. In natural, uncontaminated waters, it occurs as organically bound phosphate, condensed phosphates or as orthophosphate — often referred to by its chemical formula PO4-P. The small quantity of phosphorus present in natural waters does not promote the growth of plants. However, a rise in the concentration of phosphorus results in the proliferation of algae, which leads to the eutrophication of the water body.
-
Water Determination In Liquefied Petroleum Gas Using GC BID And Ionic Liquid Column Watercol™6/28/2018
Water in petrochemical feedstocks can cause problems for processors. Freezing of pipe lines and valves and poisoning of expensive catalysts are just a few examples.
-
Application Note: Desalination Plants: YSI Instruments Monitor Flow & Water Quality At Multiple Stages2/3/2011Desalination is the process of removing salt from sea water or brackish river or groundwater to make potable water. By YSI
-
Irrigation Technology In Agriculture: How New Technologies Overcome Challenges1/29/2019
As the world’s population continues to increase at a fast pace, more food and water will be needed to sustain humanity. In the past 50 years, we have tripled our need for water and food, and there are no signs of this trend slowing down. As a result of these conditions, smart, innovative agricultural practices are needed now more than ever. Technology can, and already does, aid agriculture in innumerable ways. One prominent part of agriculture that can use technological innovation to increase efficiency and effectiveness is irrigation.
-
TOC Analysis: The Best Tool In A Drinking Water Facility's Toolbox5/3/2019
SUEZ Water Technologies & Solutions designs and manufactures Sievers Total Organic Carbon (TOC) Analyzers that enable near real-time reporting of organic carbon levels for treatment optimization, quality control & regulatory compliance. TOC has a wide range of applicability at a drinking water plant, and therefore any drinking water utility — large or small — can measure TOC in their laboratory or online in their treatment process.
-
Fountain Testing Solutions10/29/2021
Accurate fountain (dampening) solution concentration control is essential for consistent, high-quality results in lithography. Low concentration can cause drying on the non-image area of the plate resulting in tinting, scumming, blanket piling, etc. High concentrations, on the other hand, bring about over-emulsification of the ink. This results in weakening of color strength and changes in ink rheology (body and flow properties). Correct concentration will allow the non-image areas of the plate to be appropriately wetted.
-
Pile Cloth Media Filtration Removes 97% Of Microplastics From Wastewater12/6/2023
Learn about filtering microplastics from industrial wastewater prior to discharge, and how this is one way to effectively reduce the volume of this waste material from entering our surface water.
LATEST INSIGHTS ON DRINKING WATER
-
The 2024 hurricane season was one of the most severe on record, creating unprecedented destruction to the tune of $182.7 billion worth of damage. Scientists predict that this year's storm season, which officially began June 1, will likely be highly active and volatile as well. As hurricanes become more difficult to accurately predict and prepare for, the damage caused by burst pipes, flooding, downed trees and debris, and disrupted utilities is also increasing.
-
How Edison vs. Tesla shapes today's approach to sustainable water systems.
-
In the early 2000s, I was consulting for a military contractor on expanding their mobile water treatment system for military applications. As part of that work, I researched other water supply technologies used by the U.S. military, including atmospheric water generation (AWG) — the process of extracting potable water directly from the air.
-
Microplastics seem to be everywhere — in the air we breathe, the water we drink, the food we eat. Countries have tried for the past few years to write a global plastics treaty that might reduce human exposure, but the latest negotiations collapsed in August 2025. While U.S. and global solutions seem far off, policies to limit harm from microplastics are gaining traction at the state and local levels.
-
Calgon Carbon’s Dr. Angela Rodriguez shares insights on PFAS treatment, regulatory readiness, sustainability, and how innovative carbon technologies help utilities balance compliance, cost control, and environmental goals.
-
No one knows more than water utilities how changing climate conditions are impacting the challenges and costs of delivering clean drinking water to communities they serve. In a recent episode of The Water Online Show, climate experts Jesse M. Keenan from Tulane University and Edgar Westerhof of Arcadis discussed the issue of resiliency for drinking water and wastewater systems.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.