DRINKING WATER

GettyImages-182188515 water testing Understanding Ultrapure Water, Difficulties With pH Measurement

By gaining insights into the diverse types of pH measuring analyzers and sensors, companies can make informed decisions to enhance their UPW management strategies and drive operational excellence.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

DRINKING WATER PRODUCTS

The electromagnetic signal converter IFC 050 is a perfect choice for measuring volumetric flow in various kinds of applications in the water industry but also in the food and beverage business.

Electronic ultrasonic cold water meter for measurement of cold water consumption in households, multi-unit buildings and industry.

For large camps with populations expected to exceed 2,000 people, newterra’s modular PWT-500 Potable Water Treatment Large Train System employs 40' containers dedicated to a specific, complimentary treatment process (e.g. greensand filtration, nanofiltration, etc.)

Multiport Relief Valve Springs cannot be compressed solid nor can the valve be locked closed by external adjustment. When springs are compressed to a maximum point by handwheel adjustment, the valve discs will open upon overpressure. Operating components are internal to the valve, which precludes tampering.

Learn about KROHNE's ultrasonic clamp-on flowmeter for temporary flow measurement of liquids.

Liquid, slurry, or solids measurements? Dirty applications? These maintenance-free sensors deliver the reliable performance you need, no matter what the environment.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

Appearing on The Weather Channel's "Wake Up With Al" morning show, water expert Dan Theobald puts drinking water to the test by measuring total dissolved solids (TDS) in tap water samples from Brooklyn, Manhattan, and New Jersey, as well as bottled water samples.

Scientists are developing new motors that are tiny and soft. They run on things like light, magnetic effects or chemical solutions. And they can serve specific functions — including cleaning up pollution.

Architect Kate Orff sees the oyster as an agent of urban change. Bundled into beds and sunk into city rivers, oysters slurp up pollution and make legendarily dirty waters clean — thus driving even more innovation in "oyster-tecture." Orff shares her vision for an urban landscape that links nature and humanity for mutual benefit.

Nick Dugan is an environmental engineer working in EPA's Cincinnati laboratory. He is currently focused on bench-scale trials evaluating the impact of common drinking water treatment oxidants on intact, toxin-producing cyanobacterial cells over a range of water quality conditions.

North Carolina’s Cape Fear River is a massive water system. It stretches across the lower half of the state, collecting runoff from 29 counties and providing water to millions of people. But in the city of Wilmington, where the river meets the Atlantic Ocean, the water has residents worried.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.