DRINKING WATER

WOL_iowa-park-smartball_385x250 Rural North Texas Community Cuts Non-Revenue Water By 42% With Pipeline Leak Detection Technology

Discover how a city solved its non-revenue water challenge by rapidly pinpointing three hard-to-find leaks in 13 miles of aging pipeline using a free-swimming acoustic tool.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

DRINKING WATER PRODUCTS

Endress+Hauser offers continuous level measurement and point level detection in liquids and bulk solids

In water and wastewater treatment applications, a product that offers simple commissioning, reliable operation, fast delivery, and easy maintenance offers tremendous customer value. 

The  CHEM-FEED® Wall Mount Duplex Skid System is designed to be mounted on a wall freeing up valuable floor space. Available in a simplex and duplex chemical feed pump configurations. Pipe material options include PVC, CPVC, PVDF, and Chem Proline® (PE).

iPERL+ redefines water metering, offering an integrated solution that not only ensures seamless system compatibility but also maintains unmatched accuracy in water usage measurement for your utility. With enhanced data logging capabilities and a choice between polymer and metal flow tube casings, iPERL+ is tailored to meet the unique needs of your utility.

SITRANS LT500 is the next evolution of digital level, flow, and pump controllers for radar and ultrasonic transmitters – or any 2-wire 4-20 mA device. It is the first choice for radar sensor measurements at 80 GHz and features single and dual point measurements, 6 relays, and Modbus RTU, HART, PROFIBUS DP, PROFIBUS PA, PROFINET.

The Aztec 600 Aluminium Analyzer AW631 has been designed specifically for the measurement of aluminium in potable water applications. It offers reliable, and accurate, on-line analysis of aluminium up to 2 ppm.

LATEST INSIGHTS ON DRINKING WATER

  • The city of Jackson faced a water crisis that went beyond the tap. What began as an ambitious plan to modernize its water metering infrastructure in 2014 became a logistical and financial nightmare, costing the city millions in lost revenue and declining public trust. Metering as a Service (MaaS) offered the city an alternative option.

  • There has been an abundance of funding available to address the estimated 9.2 million lead service lines currently deliver drinking water to homes, businesses, schools, and unsuspecting citizens throughout the United States. So it is disheartening to realize that millions of lead water lines are still delivering water to citizens.

  • This Q&A follows the Webinar: Beaverton's New AMI Solution Checks Every Box: Operations, Billing, Service, & Savings hosted by Water Online on October 21, 2025. The webinar featured the leadership team from Beaverton Water Division as they discussed lessons learned across operations, billing, and customer service, offering a 360-degree perspective on implementing and managing an AMI system.

  • Amid the AI-fueled gold rush, more leaders are beginning to pay attention to the short- and long-term natural resource concerns, especially around all the water needed to keep data centers running.
  • Water pricing often fails to reflect scarcity, quality, or long-term risk, forcing companies to act internally. But this action is not being done in a vacuum. The ripple effect of internal water pricing is bound to impact water utilities, and ultimately, ratepayers and consumers.
  • Misinformation and confusion could prevent some utilities from benefitting from the aqueous film-forming foam multidistrict litigation (AFFF MDL) settlements. Here are five common myths about the AFFF MDL PFAS settlements and how public water systems can make the most of this unprecedented funding opportunity.

DRINKING WATER VIDEOS

Stanford Earth’s Rosemary Knight recently spearheaded a project to map underground freshwater resources and forecast the intrusion of saltwater into aquifers beneath the California coastal town of Marina.

Water scarcity challenges are growing. Manufacturing the products used in our daily lives consumes a large amount of water. Reusing treated wastewater provides the most sustainable source of clean water.

Rather drink sewage water than LA tap water any day.

North Carolina’s Cape Fear River is a massive water system. It stretches across the lower half of the state, collecting runoff from 29 counties and providing water to millions of people. But in the city of Wilmington, where the river meets the Atlantic Ocean, the water has residents worried.

Bluefield Research analyst, Erin Bonney Casey, presents on water reuse markets in the U.S. during the WateReuse Association's One Water Innovations Press Workshop at WEFTEC 2014 in New Orleans, Louisiana.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.