DRINKING WATER

ashland-water-intake AMERICAN And Partners Install Boltless Restrained Underwater Pipeline System In Ashland, Wisconsin

Beneath the waters of Chequamegon Bay on Lake Superior in Ashland, Wisconsin, about 4,500 feet of 24-inch AMERICAN Flex-Ring Ductile Iron Pipe and a submerged timber crib intake structure were installed to ensure the city’s residents have quality drinking water for the next 100 years. The Ashland Water Intake Project began May 1, 2025, and is now complete.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

  • Remote Monitoring And Maintenance Through Digitalization
    3/17/2020

    Siemens offers to our customers the ability to make both process measurements, and to remotely monitor the activity and health of instrumentation, whether you have a SCADA, PLC or DCS system, or not. By utilizing Siemens’ ability to offer unparalleled flow, level, pressure, temperature, and weight measurement we can provide a broad range of process measurements and offer unequaled monitoring of the health and performance of those products.

  • Analysis Of Pesticide Residue In Spinach Using The AutoMate-Q40 An Automated QuEChERS Solution
    10/16/2014

    QuEChERS is a Quick-Easy-Cheap-Effective-Rugged-Safe extraction method that has been developed for the determination of pesticide residues in agricultural commodities.

  • Advances In Paper-Based Devices For Water Quality Analysis
    2/22/2017

    Water quality test strips have been around for decades. They are usually constructed from a porous media, including different types of paper, and undergo a color change when dipped into water containing the analyte of interest. These test strips have seen application in swimming pools, aquariums, hot tubs, remediation sites, and other commercial/environmental areas.

  • Lab Gas Sub-Metering Accuracy Improves With Thermal Flow Meters To Save Money
    12/1/2017

    Facility administrators will find the advanced ST100 Series Thermal Mass Air/Gas Flow Meter from Fluid Components International (FCI) helps them improve the accuracy of specialty gas point of use and sub-metering operations to achieve accurate billing in their labs for better cost tracking and control.

  • TOC Analysis: The Best Tool In A Drinking Water Facility's Toolbox
    5/3/2019

    SUEZ Water Technologies & Solutions designs and manufactures Sievers Total Organic Carbon (TOC) Analyzers that enable near real-time reporting of organic carbon levels for treatment optimization, quality control & regulatory compliance. TOC has a wide range of applicability at a drinking water plant, and therefore any drinking water utility — large or small — can measure TOC in their laboratory or online in their treatment process.

  • The Basics: Keeping Our Water Clean Requires Monitoring
    4/30/2014

    Keeping the water in our lakes, rivers, and streams clean requires monitoring of water quality at many points as it gradually makes its way from its source to our oceans. Over the years ever increasing environmental concerns and regulations have heightened the need for increased diligence and tighter restrictions on wastewater quality.

  • Pikeville, Kentucky Medical Center Leak Found Despite Ambient Noise
    6/23/2021

    Leaks found in 60 psi high density PE pipe by FELL in less than three hours. Acoustic and CCTV failed to find any leaks after more than a year of investigation. Read the full case study to learn more. 

  • How Activated Carbon Works To Purify Air And Water
    10/31/2019

    The first step is to define the performance limiting factors in the application. For this application, most of the adsorber is used for MTBE adsorption in the ppb concentration range. Adsorption of BTEX, TBA, or humic acids or other total organic carbon (TOC) components are removed by the front end of the column.

  • The Role Of Zeta Potential In Water Treatment Process Control
    5/27/2020

    Physical processes such as sedimentation, flotation and filtration remain at the heart of most process trains for the treatment of water and wastewater flows.

  • Biofouling Control In Cooling Towers With A Halogen Stabilizer
    10/22/2020

    Biofouling in cooling towers is undesirable because it can reduce heat transfer efficiency, restrict water flow, and accelerate corrosion rates. Of even greater concern is the fact that pathogen growth in cooling towers can lead to disease transmission. Given the favorable growth environment of a cooling tower, these microorganisms can reproduce, proliferate and form complex biofilm communities. Legionella bacteria, which cause Legionnaires’ disease, are one of the greatest concerns from a public health standpoint because infections are often lethal and cooling towers are the most frequently reported non-potable water source of Legionnaires’ disease outbreaks (Llewellyn 2017).

DRINKING WATER PRODUCTS

With precise dosing from reliable peristaltic pumps and high quality electrodes and photometers, the Seres titrimetric analyzers can solve a number of measurement problems. Click below for more details on specific models.

The modular design of the ProcessMaster FEP500 enhanced version offers the industry's widest range of liners electrodes and sizes to meet the needs of even the most demanding process applications in sectors as diverse as chemical, power, oil & gas, pulp & paper and metals & mining.

What happens when you combine the proven track record of the TransPort® PT878 (TransPort PT900’s powerful predecessor) with the latest technology? You get performance, productivity, and a better user experience. The TransPort is the next evolution, and it’s here to make your job easier than ever.

From the experts in chlorine management comes a multi-parameter water analysis system offering both chlorine measurement and control in one versatile instrument. Tailor the modular MicroChem®3 to your individual application with up to three measurement parameters. Designed with extensive customer input, the easy and innovative system includes an intuitive touchscreen display, menu-driven software to easily guide users through set-up and operation, and a USB interface for software updates and data log downloads.

A comprehensive solution for water quality testing with integrated data intelligence.

Proven to dramatically increase capacity performance and help to meet tightening regulations.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

RIP Kitty Hach-Darrow (October 20, 1922 - June 4, 2020), co-founder of Hach Company

How researchers at UC Merced are developing a better understanding of the three sources of water upon which California depends in order to adapt to the effects of environmental changes and make better use of this most precious of our natural resources.

In this episode of The Water Online Show: On Location, our guest is Mike Blackburn from Hach. Mike dives into the benefits of panel-mounted solutions for water quality monitoring.

Stanford Earth’s Rosemary Knight recently spearheaded a project to map underground freshwater resources and forecast the intrusion of saltwater into aquifers beneath the California coastal town of Marina.

Water scarcity challenges are growing. Manufacturing the products used in our daily lives consumes a large amount of water. Reusing treated wastewater provides the most sustainable source of clean water.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.