DRINKING WATER
Custom Tank Designs That Actively Manage PFAS Mass Transfer Zone (MTZ) — And Why It Matters More Than Ever
As utilities prepare for the pending 4-ppt PFAS drinking water MCL, many are discovering that legacy lead/lag designs—workhorses for decades when treating contaminants in the ppm and ppb range—simply are not optimized for the parts per trillion-level (ppt) precision PFAS demands.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Common LT2 Compliance Mistakes (And How To Avoid Them)
Water systems are complex, and many things can go awry that can cause a once-compliant plant to fall out of compliance or cause a compliance solution to fail at startup.
-
Organizing Your Glut Of Data To Deliver Better 'Smart Water' Analytics
Dealing with the glut of data generated by water treatment plants (WTPs), distribution systems, sewer and stormwater collection systems, and wastewater treatment plants (WWTPs) can be like trying to take a sip from a fire hose. Here is how an optimized approach to ‘smart water’ data analytics can make the difference between struggling with implementation and flourishing with efficiency.
-
Los Angeles Department Of Water And Power Uses GIS To Improve Water Incident Management
While utilities use sophisticated systems to supply clean water as well as collect and treat wastewater, the effort to manage incidents and outages leaves room for improvement. Water utilities often rely on manual processes to handle customer reports of leaks, loss-of-service or quality issues.
-
Understanding Options When Selecting An Effective, Low-Cost PFAS Solution
Municipal water utilities throughout the U.S. are increasingly grappling with the need to address PFAS once they are detected in source water. Because standards are a moving target while treatment options are limited and can represent a massive expense, addressing PFAS can be especially challenging for small water systems. The key to finding an optimal solution requires a thorough investigation of the available options.
-
How Small Utilities Can Afford To Reap The Benefits Of Large District Metering Solutions
Water scarcity issues and increased production costs are putting more pressure than ever on small water utilities, which tend to rely on relatively few personnel to deliver a quality, affordable product to consumers. The good news is that proper flow metering technology and resulting data can help ensure that water quality and service in smaller communities remain on par with larger systems.
-
Dow Achieves Maximum Efficiency With Glass-Lined Storage Tank
Every morning when you pour a cup of coffee or tear open a package of frozen waffles, the science of Dow Chemical is there to help make your breakfast convenient and fresh. Dow makes high-performance materials that go into food packaging, personal care products, medications, and clothing — to name a few.
-
Article: Water Quality Management Using Cloud Computing - Solution For Corporate Control Of Environmental Impact Data One of industry’s most vexing impediments in responding to environmental problems has been difficulties in properly centralizing and managing captured water quality data. A different approach from the heretofore standard (and now outdated) “consultant-centric,” spreadsheet-based environmental information management system — with its typical project delays and increased costs — is now essential. By Locus Technologies
-
Smart Water: Remote Sensing
Automated metering systems (AMSs) or “smart meters” can provide valuable data for electric and water utilities. Data analytics can be used to improve customer service, boost conservation, monitor the system, and even forecast demand. An ultimate goal might be to eventually monitor everything from streetlight intensity to fire hydrants.
-
GoAigua's Digital Twin Saves 1B+ Gallons Of Water/Year
Water transport and distribution systems in many cities have become complex to manage as they are forced to adjust to the problems of population growth, resource shortages, aging infrastructure and optimization of daily network operations. Consequently, digital twins of water networks are increasingly widely used for decision-making around their operation and management.
-
Energy-Efficient Blowers Help Clean Riachuelo River
Cleaning tannery effluent is an energy-intense process. The Curtidor Industrial Park (PIC) has found a way to keep energy usage and costs down while reducing pollution in the Riachuelo River.
DRINKING WATER APPLICATION NOTES
-
Oxidation Reduction Potential10/29/2021
What is ORP? Oxidation Reduction Potential or Redox is the activity or strength of oxidizers and reducers in relation to their concentration. Oxidizers accept electrons, reducers lose electrons. Examples of oxidizers are: chlorine, hydrogen peroxide, bromine, ozone, and chlorine dioxide. Examples of reducers are sodium sulfite, sodium bisulfate and hydrogen sulfide. Like acidity and alkalinity, the increase of one is at the expense of the other.
-
The Basics: Keeping Our Water Clean Requires Monitoring4/30/2014
Keeping the water in our lakes, rivers, and streams clean requires monitoring of water quality at many points as it gradually makes its way from its source to our oceans. Over the years ever increasing environmental concerns and regulations have heightened the need for increased diligence and tighter restrictions on wastewater quality.
-
Remote Monitoring And Maintenance Through Digitalization3/17/2020
Siemens offers to our customers the ability to make both process measurements, and to remotely monitor the activity and health of instrumentation, whether you have a SCADA, PLC or DCS system, or not. By utilizing Siemens’ ability to offer unparalleled flow, level, pressure, temperature, and weight measurement we can provide a broad range of process measurements and offer unequaled monitoring of the health and performance of those products.
-
Advances In Paper-Based Devices For Water Quality Analysis2/22/2017
Water quality test strips have been around for decades. They are usually constructed from a porous media, including different types of paper, and undergo a color change when dipped into water containing the analyte of interest. These test strips have seen application in swimming pools, aquariums, hot tubs, remediation sites, and other commercial/environmental areas.
-
Groundwater Remediation12/1/2020
Good quality groundwater is an important natural resource. It provides drinking water for the public as well as process water for industrial applications. Groundwater can become contaminated through a number of ways including improper handling of process chemicals or disposal of wastes.
-
The Basics: Testing RO Quality4/28/2014
Osmosis is the phenomenon of lower dissolved solids in water passing through a semi-permeable membrane into higher dissolved solids water until a near equilibrium is reached.
-
Operations And LRV Calculations At Southwest Pipeline Project Drinking Water Treatment Facility4/14/2016
This presentation will discuss the operation of a 4 MGD pressurized two-stage Ultrafiltration (UF) plant over a 14 month period at the Oliver-Mercer-North Dunn (OMND) Drinking Water Treatment Facility, North Dakota.
-
The Active Control Program For Advanced UV Oxidation12/1/2025
This application note will explore how active control programs lower operational costs of compliant contaminant removal.
-
Pile Cloth Media Filtration Removes 97% Of Microplastics From Wastewater12/6/2023
Learn about filtering microplastics from industrial wastewater prior to discharge, and how this is one way to effectively reduce the volume of this waste material from entering our surface water.
-
How To Read An Encoder9/13/2013
The HR-E LCD encoder has a 9-digit Liquid Crystal Display (LCD) to show consumption, flow and alarm information. The display automatically toggles between 9-digit and 6-digit consumption, rate of flow and meter model.
LATEST INSIGHTS ON DRINKING WATER
-
Beaverton Water Division’s transition to Kamstrup AMI and acoustic leak detection is modernizing meter reading, reducing infrastructure costs, improving leak identification, and streamlining operations as deployment progresses.
-
Learn how the Mustang Bayou Service Area (MBSA) Water System Improvements project delivered a fast-tracked, multi-phase response to rapid development and critical capacity challenges in one of the Missouri City’s fastest-growing regions.
-
As water systems grow more complex and climate patterns shift, Legionella is emerging as one of the most persistent and underestimated risks in the built environment. The threat to public health from Legionnaires' disease will likely further escalate unless decisive action is taken.
-
The city of Jackson faced a water crisis that went beyond the tap. What began as an ambitious plan to modernize its water metering infrastructure in 2014 became a logistical and financial nightmare, costing the city millions in lost revenue and declining public trust. Metering as a Service (MaaS) offered the city an alternative option.
-
There has been an abundance of funding available to address the estimated 9.2 million lead service lines currently deliver drinking water to homes, businesses, schools, and unsuspecting citizens throughout the United States. So it is disheartening to realize that millions of lead water lines are still delivering water to citizens.
-
This Q&A follows the Webinar: Beaverton's New AMI Solution Checks Every Box: Operations, Billing, Service, & Savings hosted by Water Online on October 21, 2025. The webinar featured the leadership team from Beaverton Water Division as they discussed lessons learned across operations, billing, and customer service, offering a 360-degree perspective on implementing and managing an AMI system.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.