DRINKING WATER
The Power Of Ductile Iron Pipe: A Solution For Every Application
Ductile iron pipe is a versatile, reliable solution that resists UV degradation, freezing, and physical stress. Its unmatched durability ensures long-term performance in any piping application.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Custom Water Panel Answers Multiple Water Questions
A mid-size water system in the southeast was looking to pull together multiple measurements in a single panel. After reviewing off-the-shelf solutions, they realized there was nothing that met their requirements.
-
Enhancing Leak Detection With Remote Pressure Monitoring
Remote pressure monitoring is increasingly being implemented by progressive water utilities, both large and small, to get better visibility into their distribution systems. This results in lower operating costs and reduced stress on their aging pipe networks.
-
Case Study: Deuel Vocational Institution (DVI) ZLD Drinking Water Treatment System, Tracy, CA
A study was conducted by an environmental engineering firm to design a suitable treatment system for the groundwater currently used as the potable water supply for DVI. Reverse Osmosis (RO) was determined to be an effective technology in meeting the applicable standards for water quality.
-
An Affordable Greywater Treatment And Reuse Solution For Commercial Properties
The Boy Scouts of America wanted an environmentally friendly method for disposing of the greywater generated by their shower buildings. Here’s how Orenco’s AdvanTex Treatment Systems helped.
-
Addressing Fouling Challenges In Water Treatment With RO Membrane
Reverse osmosis (RO) membranes are widely used in potable water, wastewater, and industrial applications. However, a major issue in the application of RO membrane technology for desalination and wastewater reclamation is membrane fouling. It limits operating flux, decreases water production, and increases power consumption. Membrane fouling also increases the need for RO plants to perform periodical membrane CIP procedure. These problems decrease process efficiency, increase operation cost, and raise environmental issues related to the CIP solutions disposal.
-
Water Loss Control For Small Water Systems – Part 2
This article will tackle the true meaning of water loss in terms of real loss, using scenarios and industry technologies to help us discover real loss.
-
The Chemistry Of A Bloom: What Water Tests Reveal About Toxic Algae
Understanding the chemistry behind algal blooms is key to early detection, effective monitoring, and mitigating their impacts. Fortunately, water testing technologies are revealing powerful insights into what’s really happening below the surface.
-
Arsenic III Vs Total Arsenic: What Is The Difference?
In this article, learn what differentiates arsenic III and arsenic v, two different oxidation states of the chemical element arsenic.
-
Dow Achieves Maximum Efficiency With Glass-Lined Storage Tank
Every morning when you pour a cup of coffee or tear open a package of frozen waffles, the science of Dow Chemical is there to help make your breakfast convenient and fresh. Dow makes high-performance materials that go into food packaging, personal care products, medications, and clothing — to name a few.
-
Moving Toward Sustainability: Perfecting Wastewater Pretreatment For Direct Potable Reuse
This article will explain why pre-treatment is so important to direct potable reuse and the most important aspects of pre-treatment design.
DRINKING WATER APPLICATION NOTES
-
Protecting Pumps From Dead Head Conditions4/6/2017
The C445 motor management relay offers the most configurable protection options in the industry, with features specifically designed to protect critical pumps from costly damages due to dead-head and other underloaded or starved pump conditions.
-
Bringing Efficiency And New Confidence To BOD₅ Analysis2/4/2013
Biochemical Oxygen Demand (BOD) analysis is the test everyone loves to hate—and for compelling reasons.
-
Dosing Of Sodium Hypochlorite Solution For Drinking Water Disinfection9/22/2022
A water purveyor was in urgent need of a chemically resistant flow instrumentation with a long life of service that allowed reliable and long-term stable dosing of the sodium hypochlorite solution.
-
Active Energy Control – Energy Reductions Of Up To 10% Above Standard Drives4/1/2017
Energy costs continue to increase. At the same time, there is increased pressure to reduce utility bills without sacrificing operations or comfort.
-
Application Note: Troubleshooting A pH Electrode1/26/2011
Many factors affect performance of a pH electrode. When performance degrades, it is always a challenge for the analyst to identify the cause. Common troubleshooting procedures, which include evaluation of slope, electrode drift, time response, and accuracy, take considerable time. By Thermo Fisher Scientific
-
Bridge Crossings And The Proper Use Of EX-TEND®, FLEX-TEND®, And Force Balanced FLEX-TEND Products11/1/2020
Of particular interest when it comes to bridges is the locating of pressurized water lines on and under bridge structures. Pressurized pipelines can present a number of unique challenges to the design engineer and utility owner.
-
Application Note: YSI Water Quality Monitoring Buoys Help Connecticut DOT Protect The Housatonic River12/27/2005When replacement of the Sikorski Bridge spanning the Housatonic River was authorized, Paul Corrente and the Connecticut Department of Transportation (CT-DOT) set about the design and development of a water quality monitoring program to monitor the contractor’s in-water activities to insure full protection of the river from perturbation
-
Waterworks Joints 10110/30/2025
There are many different joints that can be found on waterworks pipeline components. This paper focuses on the three most common joints.
-
VFD Energy Savings For Pumping Applications4/6/2017
In the early days of variable frequency drive (VFD) technology, the typical application was in process control for manufacturing synthetic fiber, steel bars, and aluminum foil.
-
Harmonics Reduction Methods4/17/2017
There are several basic methods for reducing harmonic voltage and current distortion from nonlinear distribution loads such as adjustable frequency drives (AFDs). Following is a description of each method, along with each method’s advantages and disadvantages.
LATEST INSIGHTS ON DRINKING WATER
-
Every year on November 19, Water Mission observes World Toilet Day — a day designated by the United Nations to focus on the importance of safe sanitation for all.
-
Global Water Outcomes expert notes that “water utilities are facing unprecedented challenges and opportunities,” citing the role of digital solutions moving forward.
-
In this Q&A, Dr. Elke Süss of Metrohm addresses the urgent need for haloacetic acid testing in response to “one of the most significant updates to EU drinking water monitoring in recent years.”
-
Amazon and Xylem partner to tackle Mexico’s leaking water systems as the country balances water scarcity and a growing tech sector.
-
Water scarcity is increasingly impacting sectors from agriculture and energy to urban planning and high-tech manufacturing. Recently, industry leaders gathered to explore how new technologies and complex industrial demands are forcing a fundamental rethinking of water infrastructure.
-
Nobel-winning molecular materials are poised to reinvent purification, desalination, and reuse.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.