DRINKING WATER

GettyImages-2168753167_450_300 This Is The Water Meter Empowering Utilities To Build Resilient Water Networks

Advanced residential meters now deliver real-time insight and remote flow control, helping utilities respond faster to leaks, weather events, and operational challenges while strengthening long-term network resilience.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

  • How To Install A Submersible Pump In Discharge Tubes
    11/28/2012

    In the fields of water and waste water technology, submersible pumps represent a viable economic and technical alternative to conventional, dry-installed pumps. In particular, they offer a number of handling advantages during maintenance and installation work.

  • TOC Monitoring In Process Return Condensate
    4/23/2021

    Industrial power plants or co-generation power plants utilize steam for industrial purposes other than power production.

  • Irrigation Technology In Agriculture: How New Technologies Overcome Challenges
    1/29/2019

    As the world’s population continues to increase at a fast pace, more food and water will be needed to sustain humanity. In the past 50 years, we have tripled our need for water and food, and there are no signs of this trend slowing down. As a result of these conditions, smart, innovative agricultural practices are needed now more than ever. Technology can, and already does, aid agriculture in innumerable ways. One prominent part of agriculture that can use technological innovation to increase efficiency and effectiveness is irrigation.

  • How To Read An Encoder
    9/13/2013

    The HR-E LCD encoder has a 9-digit Liquid Crystal Display (LCD) to show consumption, flow and alarm information. The display automatically toggles between 9-digit and 6-digit consumption, rate of flow and meter model.

  • SensyMaster Thermal Mass Flowmeter
    8/3/2021

    SensyMaster helps to improve the operating costs of the most cost intensive process in sewage plants: Aeration. High-measuring performance and state of the art technology helps customers increase plant efficiency.

  • Active Energy Control – Energy Reductions Of Up To 10% Above Standard Drives
    4/1/2017

    Energy costs continue to increase. At the same time, there is increased pressure to reduce utility bills without sacrificing operations or comfort.

  • Real-Time Water Quality Data For Agriculture
    9/23/2020

    We arm farmers with mission-critical water data to help enhance crop yield and taste. KETOS delivers valuable insights for fluctuations in deficiency and toxicity.

  • Complete Flow Solutions
    11/11/2024

    Siemens’ extensive portfolio includes various flow measurement technologies, such as Coriolis, clamp-on ultrasonic, vortex, and differential pressure meters, catering to a wide range of industrial needs.

  • Ultrasonic Level Measurement In Water And Wastewater Plants
    5/19/2016

    Radar technology is often viewed as the “best” method of level measurement, but this isn’t necessarily true in the water industry.

  • Protecting Pumps From Dead Head Conditions
    4/6/2017

    The C445 motor management relay offers the most configurable protection options in the industry, with features specifically designed to protect critical pumps from costly damages due to dead-head and other underloaded or starved pump conditions.

DRINKING WATER PRODUCTS

The PipeRank™ machine learning technology delivered by Echologics, leverages historical failure data and other site-specific data to accurately predict which of your water pipelines will break next, allowing you to prioritize segments for further inspection and those that need to be replaced immediately.

The MEGA-STOP® is a safe and economical “over-insertion” solution. With it, you can properly and quickly assemble pipe joints each and every time.

The PT5 is a rugged, lab-accurate water quality pocket tester with simple, one-button functionality.

The Lmic is an easy-to-use, low-cost electronic listening stick combined with a ground microphone. It is ideal for general leak-sounding operations and can be fitted with either a tripod foot (for use as a ground microphone) or probe rods (for sounding at fittings or in the soft ground).

The OPTIFLUX 4100 is an electromagnetic flowmeter (EMF) for a wide range of standard process applications with aggressive and abrasive liquids. It enables reliable flow measurement even under harsh process conditions with temperatures up to +180°C / +356°F, low conductivity (≥5 µS/cm) and solid content (up to 10%). This makes the flowmeter particularly suitable for applications involving corrosive chemicals, sewage and drilling mud or mining sludge. Installation in measurement chambers subject to (constant) flooding is also possible using the optional IP68 / NEMA 6P rated version.

Utilizing the secure, existing cellular network infrastructure, the ORION® Cellular LTE endpoint is designed for maximum flexibility to meet a variety of your AMR and AMI water meter reading system and application needs.

LATEST INSIGHTS ON DRINKING WATER

  • People around the globe are trying to figure out how to save, conserve, and reuse water in a variety of ways, including reusing treated sewage wastewater and removing valuable salts from seawater. But for all the clean water they may produce, those processes leave behind a type of liquid called brine. I’m working on getting the water out of that potential source, too.
  • Restoring eelgrass beds is critical because they provide habitat for many kinds of marine life, improve water quality by filtering out pollution, and the plant’s root system stabilizes the sediment on the seafloor, protecting shorelines from erosion.

  • No matter where you live in the U.S., you have likely seen headlines about PFAS being detected in everything from drinking water to fish to milk to human bodies. Now, PFAS are posing a threat to the Great Lakes, one of America’s most vital water resources.
  • When people think about agricultural pollution, they often picture what is easy to see: fertilizer spreaders crossing fields or muddy runoff after a heavy storm. However, a much more significant threat is quietly and invisibly building in the ground.
  • As water systems become more circular and complex, understanding and managing the subsurface — the hidden half of the water cycle — is becoming a critical enabler of resilience. This article explores the key trends shaping this new reality, from tackling “forever chemicals” to the water strategies redefining heavy industry.
  • The White House has finalized plans to roll back rules under the National Environmental Policy Act (NEPA), narrowing its focus and limiting what the current administration claims are needless delays for federal approval of water, energy, and other infrastructure plans. For water and wastewater utilities, the changes could speed up permitting for critical projects, although experts warn the tradeoffs could do more harm than good.

DRINKING WATER VIDEOS

The TROLL® 9500 Water Quality Instrument simplifies multiparameter monitoring. The TROLL 9500 is a powerful, portable unit that houses up to nine water quality sensors, internal power, and optional data logging capabilities.

NASA scientists used tree rings to understand past droughts and climate models incorporating soil moisture data to estimate future drought risk in the 21st century.

In Raleigh, N.C., there's a house... or what looks like a house. What's hidden inside is more important than most people realize.

O’Brien, Texas is just one of thousands of small communities in the United States that struggle to find the resources to ensure that the water coming out of the tap is safe to drink. The recent budget proposal by the Trump administration will only make matters worse. Watch this documentary short produced by Tom Rosenberg and Earth Institute fellow Madison Condon details one shrinking town’s drinking water crisis.

This 45-minute webinar will explore the latest technology and methodologies that are transforming water management. Participants will gain a comprehensive understanding of how real-time data analytics can significantly enhance the efficiency and accuracy of water-loss detection and proactive management.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.