DRINKING WATER

ashland-water-intake AMERICAN And Partners Install Boltless Restrained Underwater Pipeline System In Ashland, Wisconsin

Beneath the waters of Chequamegon Bay on Lake Superior in Ashland, Wisconsin, about 4,500 feet of 24-inch AMERICAN Flex-Ring Ductile Iron Pipe and a submerged timber crib intake structure were installed to ensure the city’s residents have quality drinking water for the next 100 years. The Ashland Water Intake Project began May 1, 2025, and is now complete.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

DRINKING WATER APPLICATION NOTES

  • 'TOTEX' Is Key When Purchasing Instrumentation
    4/29/2021

    There’s a lot to be considered in the price tag of an ultrasonic instrument. Derek Moore from Siemens explains how the historical way of thinking only of capital costs needs to change to the more holistic approach of total expenditures.

  • Determination Of Hexanal In Foods Utilizing Dynamic Headspace
    4/9/2015

    Hexanal is one of many well-documented aromatic components that contribute to flavor and aroma in common consumer food products containing omega-6 fatty acids. Hexanal content is also used to measure the oxidative status of foods rich in omega-6 fatty acids.

  • Process Optimization For Flow Measurement
    4/29/2021

    The Saalfeld-Rudolfstadt Association in Germany must rely on cutting-edge technologies that optimize flow measurement in order to allow for smooth processes and supply 82,000 inhabitants with clean drinking water. 

  • Application Note: Low-Flow Sampling Of Water Quality Parameters Used In Determining Groundwater Stability
    1/20/2010
    In April 1996, the U.S. EPA developed and published a document entitled Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures. The document states that “the most common ground water purging and sampling methodology is to purge wells using bailers or high speed pumps to remove 3 to 5 casing volumes followed by sample collection.” Adverse impacts can occur through this method affecting sample quality by increasing levels of turbidity. These problems can often be mitigated by using low-flow purging and sampling to reduce sampling-induced turbidity. By YSI
  • Ultrapure Water For Determination of Toxic Elements In Environmental Analyses
    4/10/2018

    In this paper the importance of reagent water quality for toxic element environmental analyses is discussed, and the suitability of fresh ultrapure water produced using MilliporeSigma water purification systems for ICP-OES and ICP-MS trace element analyses in environmental laboratories is demonstrated.

  • What Is Genclean Advanced Oxidation Disinfection Solution And What Is It Used For?
    2/18/2021

    A non-toxic, advanced oxidation (AOP) formula of minerals chelated with oxygen and stabilized in an aqueous water solution. It is a viable option in industries and applications requiring a solution to challenging situations where high level effective sanitization and oxidation is required. Read more to learn how the Genclean advanced oxidation treatment solutions can be used in different applications.

  • Free Chlorine Measurement In Drinking Water Treatment
    12/21/2005

    Before water can be used as a safe and reliable source for drinking water, it must be properly treated. Since water is a universal solvent, it comes in contact with several different pathogens, some of which are potentially lethal, and inactivation is accomplished through chemical disinfection and mechanical filtration treatment. This treatment consists of coarse filtration to remove large objects and pre-treatment which includes disinfection using chlorine or ozone

  • Analysis Of Pesticide Residue In Spinach Using The AutoMate-Q40 An Automated QuEChERS Solution
    10/16/2014

    QuEChERS is a Quick-Easy-Cheap-Effective-Rugged-Safe extraction method that has been developed for the determination of pesticide residues in agricultural commodities.

  • Analyzing Total Organic Carbon In Sea Water
    4/2/2015

    The analysis of Total Organic Carbon (TOC) in seawater can be both challenging and expensive. The concentration of organic carbon in seawater is of considerable interest. The effect this matrix can have on TOC analyzers can lead to rapid consumable turnover, costly maintenance and repairs.

  • UV Technology Offers Solution For Emerging Water Crisis
    2/19/2014

    Many are turning to UV as an effective barrier to enable the reuse of wastewater, for indirect reuse, and aquifer recharge.

DRINKING WATER PRODUCTS

The HYMAX VERSA is a coupling that can wrap around damaged pipe usually repaired with the cut-and-replace technique while providing dynamic deflection to reduce the risk of damage caused by ground shifts.

Increase filtration capacity and performance in existing footprint.

The presence of active pharmaceutical ingredients, radio-opaque substances and endocrine disrupting chemicals in raw water sources is a relatively new emerging issue in relation to drinking water quality. However, the influence of pollutants on health and general well-being is becoming apparent with the incidence of carcinoma increasing and fertility rates being affected. A solution for the efficient removal of these substances from water use by production sites is required.

The Aztec 600 Ammonia Analyzer AW632 offers reliable and accurate on-line analysis of ammonia and ammonium ions up to 3 ppm NH3.

For financial leaders and engineers, every investment must drive efficiency, reliability, and long-term savings. Pinnacle Ozone Solutions delivers cutting-edge ozone systems designed to reduce costs, improve performance, and future-proof operations.

HYMAX GRIP®  joins and restrains a wide selection of pipes of different types and diameters, easily and reliably. Due to its patented design, it allows the joining of pipes of the same or different materials and diameters and preventing axial pipe movement.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

See how SIWA MDM user experience is easy with various billing tiles and screens to help optimize the billing processes. Quickly see billing readiness, request activity in a highly configurable dashboard.

Dr. Jamie Dewitt explains her research in Phamacology and Toxicology and why water pollution might pose a problem no matter where you are.

This video gives an overview of the features and benefits of the YSI Professional Plus, or Pro Plus, handheld multiparameter water quality instrument.

Water and energy are inextricably linked, yet in our 20th-century water systems we use freshwater once then throw it away. With innovations designed to enhance desalination technologies, agricultural runoff, produced water from industry, and inland brackish groundwater that are now seen as untreatable could all be sources of clean, safe, and affordable water.

Rather drink sewage water than LA tap water any day.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.