DRINKING WATER
Custom Tank Designs That Actively Manage PFAS Mass Transfer Zone (MTZ) — And Why It Matters More Than Ever
As utilities prepare for the pending 4-ppt PFAS drinking water MCL, many are discovering that legacy lead/lag designs—workhorses for decades when treating contaminants in the ppm and ppb range—simply are not optimized for the parts per trillion-level (ppt) precision PFAS demands.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Saudi Arabian Airport Successfully Uses Aquatech's Seawater Reverse Osmosis System India’s first Ultra Mega Power Project (UMPP) at Mundra in Coastal Gujarat, a 4,000 MW coal fired plant, is owned by Coastal Gujarat Power Limited (CGPL), a Tata Power group company.
-
Reliable Production Of High Quality Permeate For Irrigation
Following one of the driest periods on record in California, farmers in the San Joaquin Valley faced restricted water allocations.
-
Drinking Water Treatment - Coquitlam Water Treatment Plant, British Columbia
In 2005, in response to changes to the Canadian Drinking Water Quality guidelines, the Greater Vancouver Water District Board approved a proposal to upgrade the Coquitlam WTP with UV treatment technology to act as the primary means of inactivation.
-
$0 CAPEX Model Aids Innovation In Changing Water Environments
Managers of industrial, municipal, and agricultural water quality or water use monitoring can attest to the challenges of balancing depth of detail against the costs of achieving it. Now, an Infrastructure-as-a-Service (IaaS) business model is rewriting the economic impacts of those challenges by repackaging water monitoring capabilities to meet evolving needs more efficiently.
-
Surface Water Treatment & LT2 Compliance - Surprise, Arizona
The White Tanks Regional Water Treatment Facility (White Tanks) is located in Surprise, Arizona, and treats surface water from the Colorado River that is delivered by a 336 mile (540 kilometer) man-made canal.
-
A Multi-Barrier Approach To Complex Water And Wastewater Contaminant Removal
With the issue of water safety in the headlines, even non-water professionals are familiar with common contaminants like lead and arsenic – but how can we address these public health hazards?
-
Troubleshooting A Sudden Fecal Coliform Non-Compliance Event
A municipal wastewater treatment plant investigated a sudden increase in fecal coliform exceedance events.
-
Keeping The Operator In Focus: The Four Pillars Of Operator Effectiveness
This paper shows how the four pillars of operator effectiveness lead operators to greater awareness, faster response and better decisions.
-
Village Blue Lake Pontchartrain Offers New Orleanians Insights Into Local Water Quality
Water quality monitoring can be a powerful tool to help inform policies and environmental restoration efforts, and to keep local water bodies healthy. EPA recently launched a water quality monitoring project in New Orleans that’s helping the community learn more about Lake Pontchartrain’s water quality and its greater connection to the Mississippi River.
-
EPA Scientists Test Non-Targeted Analysis Methods Using Drinking Water Filters
Today, researchers can rapidly search for thousands of never-before studied chemical compounds in a wide variety of environmental, residential, and biological media. This approach is called “non-targeted analysis” (NTA). It differs from targeted analysis because researchers do not have to know what specific chemical they are looking for in a sample. They can use high-resolution mass spectrometry (HRMS) to rapidly identify many of the chemicals present in a sample. The HRMS measures the accurate mass of molecules and can find chemicals that would have gone unnoticed before. This approach is beneficial not just to researchers, but to States, tribes, and local communities who might want to know more about chemical exposure.
DRINKING WATER APPLICATION NOTES
-
HOD™ (Hydro-Optic Disinfection) UV Water Treatment For Bottled Water3/27/2025
The HOD™ (Hydro-Optic Disinfection) UV water treatment system by Atlantium Technologies represents a groundbreaking advancement in drinking water disinfection, particularly for the bottled water industry.
-
Industry-Specific Applications For UV Technology6/17/2024
In Microelectronics, Aquafine UV systems provide a synergistic approach towards the reduction of trace organics and microbial contamination for ultrapure water.
-
Application Note: Ozone Measurement In Potable Water3/1/2010
Ozone is a powerful oxidizing agent that can be used to destroy the organic compounds that affect the taste and odor of potable water. Environmental concerns have led to increased use of ozone because, unlike chlorine, it does not form hazardous by-products.
-
Groundwater Remediation12/1/2020
Good quality groundwater is an important natural resource. It provides drinking water for the public as well as process water for industrial applications. Groundwater can become contaminated through a number of ways including improper handling of process chemicals or disposal of wastes.
-
'TOTEX' Is Key When Purchasing Instrumentation4/29/2021
There’s a lot to be considered in the price tag of an ultrasonic instrument. Derek Moore from Siemens explains how the historical way of thinking only of capital costs needs to change to the more holistic approach of total expenditures.
-
Water Determination In Liquefied Petroleum Gas Using GC BID And Ionic Liquid Column Watercol™6/28/2018
Water in petrochemical feedstocks can cause problems for processors. Freezing of pipe lines and valves and poisoning of expensive catalysts are just a few examples.
-
Process Optimization For Flow Measurement4/29/2021
The Saalfeld-Rudolfstadt Association in Germany must rely on cutting-edge technologies that optimize flow measurement in order to allow for smooth processes and supply 82,000 inhabitants with clean drinking water.
-
Analyzing Total Organic Carbon In Sea Water4/2/2015
The analysis of Total Organic Carbon (TOC) in seawater can be both challenging and expensive. The concentration of organic carbon in seawater is of considerable interest. The effect this matrix can have on TOC analyzers can lead to rapid consumable turnover, costly maintenance and repairs.
-
Recording & Control: In Coagulant Dosage Applications For Potable Water Treatment7/1/2019
Potable water or drinking water as it is also known, is water that is safe to drink or to be used in food preparation. Typically, in developed countries, tap water meets the required drinking water standards, although only a small proportion is actually drank or used in food preparation.
-
Leak Detection On Water Distribution Network Using Clamp-On Flowmeters5/22/2023
A global engineering company realized that their leak identification methods were time consuming and expensive, and so began to explore alternative solutions, such as ultrasonic flow meters.
LATEST INSIGHTS ON DRINKING WATER
-
Beaverton Water Division’s transition to Kamstrup AMI and acoustic leak detection is modernizing meter reading, reducing infrastructure costs, improving leak identification, and streamlining operations as deployment progresses.
-
Learn how the Mustang Bayou Service Area (MBSA) Water System Improvements project delivered a fast-tracked, multi-phase response to rapid development and critical capacity challenges in one of the Missouri City’s fastest-growing regions.
-
As water systems grow more complex and climate patterns shift, Legionella is emerging as one of the most persistent and underestimated risks in the built environment. The threat to public health from Legionnaires' disease will likely further escalate unless decisive action is taken.
-
The city of Jackson faced a water crisis that went beyond the tap. What began as an ambitious plan to modernize its water metering infrastructure in 2014 became a logistical and financial nightmare, costing the city millions in lost revenue and declining public trust. Metering as a Service (MaaS) offered the city an alternative option.
-
There has been an abundance of funding available to address the estimated 9.2 million lead service lines currently deliver drinking water to homes, businesses, schools, and unsuspecting citizens throughout the United States. So it is disheartening to realize that millions of lead water lines are still delivering water to citizens.
-
This Q&A follows the Webinar: Beaverton's New AMI Solution Checks Every Box: Operations, Billing, Service, & Savings hosted by Water Online on October 21, 2025. The webinar featured the leadership team from Beaverton Water Division as they discussed lessons learned across operations, billing, and customer service, offering a 360-degree perspective on implementing and managing an AMI system.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.