DRINKING WATER

getty-2045293852-data-water-waves-meter-data Empowering Water Utilities Through Meter Data

Modernizing water infrastructure requires robust digital systems to manage high-volume metering data. Centralizing this information enables precise leak detection, accurate water balancing, and proactive customer engagement, ultimately driving operational efficiency and long-term sustainability goals.

DRINKING WATER CASE STUDIES AND WHITE PAPERS

  • Radium Removal For A Large Treatment System

    The City of San Angelo, TX selected WRT’s Z-88 Radium Removal treatment system for reducing high levels of radium in their wells. The city’s Phase I treatment plan was fulfilled in 2014 with the installation of the first Z-88 Radium Removal treatment system. This large treatment facility has been reducing the levels of radium below the Maximum Contaminant Level (MCL) since it’s inception.

  • Responsible Reclamation – City of Abilene, Texas

    To combat drought, Abilene, Texas, implemented a reuse system utilizing O3​ + BAC to remove trace organics. This solution met strict standards, ensured water resilience, and proved more cost-effective than AOP alternatives.

  • Case Study: High Turbidity & Silt Density Index

    The refinery was using a competitive treatment program to clarify the river water for use in the cooling towers as make-up and for reverse osmosis units that supplied high pressure boiler water make-up.

  • Safe And Sustainable Drinking Water For Over 200,000 People

    A private company that provides water via privately-owned-and-operated well fields with enough annual water supply to provide sustainable drinking water to more than 200,000 people faced a number of sampling, testing, and monitoring challenges. Lab tests and environmental monitoring costs were high and the data collected was not easily integrated with their SCADA system.

  • Plastic Flow Meters Reduce Weight, Space, Corrosion — Not Accuracy

    There are a variety of reasons for wanting accurate flow metering — e.g., billing purposes, precise proportioning of chemical injections, and other process flow decisions. That is why highly accurate mag meters are so popular in many applications. Now, new lightweight, corrosion-resistant mag meters provide the same advantages as plastic piping for harsh environments and flows that cover all the bases…and acids.

  • Fuel And Fuel Additives

    The fuels that propel modern society have been found in water supplies all over the world. Some fuel-related contaminants can be found at a majority of the United States Environmental Protection Agency’s (USEPA) National Priority List Sites, where they pose a potential threat to human and environmental health.

  • The Payoff From Improved Chemical Dilution

    Chemical dilution systems play a critical role in many municipal and industrial water treatment systems. However, older technology tends to be less reliable and accurate while being a drain on resources, whereas a more advanced solution can significantly improve performance and generate labor savings.

  • Water Loss Reduced By 87%

    In June 2014, MATCHPOINT signed a 12-month performance based contract to reduce Non-Revenue Water (NRW) at Audubon Estates community in McDonough, GA.

  • Membrane Module Pilot Test In North Dakota

    Toray UF membrane modules were piloted over a fifteen-week period to help service the growing demand for clean water in southwest North Dakota. The outcome, as part of the Southwest Pipeline Project (SWPP), would be construction of the Oliver-Mercer-North Dunn (OMND) Water Treatment Plant.

  • No Chlorine, No Contamination: A Cleaner Future For Wastewater Reuse

    As municipalities worldwide look to reuse water for agriculture, industry, and tertiary treatment such as filtration and disinfection prior to discharge or reuse for irrigation or industrial purposes, one inconvenient truth continues to lurk in the pipes: chlorine.

DRINKING WATER APPLICATION NOTES

  • Automatic Rinse Tank Controls
    10/29/2021

    Proper rinsing is one of the most important steps in quality manufacturing or metal finishing. Plenty of low cost, good quality water for rinsing has been available in the past, so rinse water conservation has been largely ignored.

  • MEGA-STOP Bell Protection System Aids In Pipe Joint Assembly
    4/13/2021

    Water and wastewater piping come in a variety of materials, joints, and diameters. They can meet a multitude of demands and needs for the country's infrastructure.

  • Bottled Water Industry: Liquid Analytical Solutions
    11/10/2013

    Americans consume more than 9.1 billion gallons of bottled water annually - an average of twenty nine gallons per person every year. 

  • Optimization Of Water Treatment Using Zeta Potential
    5/27/2020

    Drinking water in the US and developed nations of the world is treated to remove contamination of foreign materials, both mineral and organic.

  • Alcoholic Beverage Fusel Alcohol Testing With Static Headspace
    9/2/2014

    A static headspace method was developed using Teledyne Tekmar automated headspace vial samplers to meet the method requirements of the Alcohol and Tobacco Tax and Trade Bureau of the US Department of the Treasury (TTB) method SSD: TM:2001 for testing fusel alcohols in alcoholic beverages.

  • Removal Of PFCs With Activated Carbon
    12/30/2013

    In recent years, various perflorinated chemicals (PFCs) have come under increasing scrutiny due to their presence in the environment, in animals, and in human blood samples. There are two major classes of PFCs: perfluoroalkyl sulfonates such as perfluorooctanesulfonic acid (PFOS) and long chain perfluoroalkyl carboxylates such as perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA).

  • Water Treatment In Boilers And Cooling Towers
    10/29/2021

     Most people recognize problems associated with corrosion. Effects from scale deposits, however, are equally important. For example, as little as 1/8" of scale can reduce the efficiency of a boiler by 18% or a cooling tower heat exchanger by 40%!

  • Background And Summary Of Tests For The 2000PV Restraint
    4/13/2021

    The 2000PV is a restraint for PVC pipe and the standardized mechanical joint. This product is the result of years of testing and evaluation and its performance has been proven by thousands of hours of proof tests, as well as third-party evaluations. This report describes the 2000PV through the 12" size.

  • Flexible Expansion Joints Provide Protection For Pipelines Subject To Subtle Or Sudden Movement
    12/7/2020

    Flex-Tend flexible expansion joints have a proven record of providing protection for pipelines subject to subtle or sudden movement. As with all products used in the water and wastewater industry, protection is optimized with the selection of the proper assembly incorporated into a sound design. This paper is intended to provide assistance in both of these areas.

  • Protection Of Membrane Systems Utilized For Municipal Water
    12/1/2020

    As water scarcity issues around the world become more acute, more municipalities are having to turn to alternative water sources for potable water supplies. Also, many municipalities in coastal areas are seeing the quality of their water sources degrade as sea water intrusion occurs.

DRINKING WATER PRODUCTS

As PFAS and other emerging contaminants of concern are increasingly regulated, De Nora is developing new and effective methods for addressing CECs, innovating for the future.

Endress+Hauser launched E-direct, an online store that allows customers to easily and securely order high quality measurement products at competitive prices.

Calgon Carbon’s liquid-phase equipment systems provide utilities with compact, flexible, and cost-effective means to apply both granular activated carbon (GAC) and ion exchange (IX) technologies to treat even the most difficult water treatment challenges.

At 120Water, we take the weight off the shoulders of our clients. From expert guidance and best practices to a proven activation process, we help ensure your program achieves ongoing success.

What is water reuse?

Water reuse is the process of treating and reclaiming water from various sources for practical purposes, including groundwater recharge, industrial applications, wetland restoration, agricultural irrigation, public access area uses, as well as drinking water applications. By reusing water, communities can reduce dependence on traditional water supplies, avoid costly imported water from 3rd party providers, and improve resilience in water systems. Thanks to progress in water treatment technology, along with economic and regulatory incentives, water recycling has become a cost-effective and sustainable solution to meet the growing demand for highly treated water and overcome supply shortages during droughts.

There are three primary types of water reuse: Indirect Potable Reuse (IPR), Direct Potable Reuse (DPR), and Non-Potable. In IPR reuse systems, advanced treated water is either injected into an environmental buffer (groundwater, river, or reservoir) before being extracted again for use, whereas DPR is directly blended into the drinking water treatment plant or distribution system. Non-potable water is not intended for human consumption and can be used for irrigation, industrial processes, laundry, or toilet flushing.

Advanced treatment technologies, such as membrane filtration, reverse osmosis, ultraviolet disinfection, ozonation, and advanced oxidation processes (AOP), play a crucial role in ensuring the quality and safety of reclaimed water.

Why reuse water? 

As water scarcity continues to rise, water reuse is an essential strategy for creating a more sustainable future. The use of recycled water reduces the demand for freshwater sources, which are becoming increasingly scarce due to population growth, climate change, and other factors.

Here are some key benefits of water reuse:

  • Safeguard quality and resilience: Reused water is purified well beyond drinking water standards, improving resilience and ensuring quality for both potable and even non-potable purposes.
  • Uphold safety: Treatment processes like ozone and ultraviolet light can be used to disinfect or break down complex contaminants, ensuring water is pathogen-free and concentrations are below maximum contaminant levels (MCL).
  • Ensure cost savings and efficiency: After treating a waste stream to discharge level, it may require less treatment to bring it to reuse standards, making reuse not only environmentally responsible but also cost-effective in many scenarios and locations.
  • Conserve traditional water supplies: By reusing water, we can lessen our reliance on conventional water resources like rivers, lakes, and aquifers, thereby conserving them for future generations.
  • Reduce carbon footprint: Water reclamation is often more efficient than treating a raw water resource, which can lessen environmental impact.
  • Enable versatility and customization: Advanced treatment systems are tailored to meet specific needs for a variety of sectors, including industrial, urban, agricultural, and public access area uses.

How to reuse water 

The major aim of every reuse project is to minimize human health risk associated with the use or consumption of reclaimed water. While the exact treatment requirements depend upon the source water quality and the reuse purpose, to be cost-effective, the treatment must be energy efficient and have a high-water yield.

An adequate treatment design plan depends on the application the water will be used in. In non-potable applications, normally filtration and disinfection will suffice, while potable reuse generally requires a combination of advanced treatment processes such as membrane filtration, reverse osmosis, disinfection, and/or advanced oxidation.

Xylem has brands and solutions to fit every stage of the water reuse process: 

  • beginning with the transport of raw sewage and wastewater with Xylem brands like Flygt
     
  • to secondary treatment to remove most dissolved and suspended organic matter and nutrients with brands like Sanitaire and Envirex
  • to tertiary stages that remove residual particulate matter, nutrients, TDS, and nematode eggs with brands like Leopold and Davco
  • along with disinfection and advanced oxidation that inactivates pathogens, and breaks down trace constituents and emerging contaminants of concern with brands like Wedeco, ETS-UV, ATG UV Systems, Pacific Ozone, and Wallace & Tiernan 
  • and finally, digital solutions like YSI, OI Analytical, Xylem Vue that leverage remote monitoring, alerts, and data analytics for proactive and predictive maintenance

Based on practical knowledge from decades of combined brand experience, thousands of installations worldwide, and strengths in powerful R&D innovation, our team looks at the entire wastewater process at your plant. We will work with your consulting engineer and State regulators to integrate the right technologies to meet your intended targets. Modular design makes it easy to fit your requirements now and easily expand to meet your future needs.

Water reuse partnership 

Though Xylem has teams of specialists, years of expertise, deep understanding of water regulations, and a broad solutions portfolio, we understand the complexities of water systems and the potential to partner with various water treatment experts. Xylem has partnered with hundreds of different firms around the globe to ensure the most efficient and viable water systems for communities and municipalities.

Our goal is to thoroughly understand each project, determine the best methods, and customize optimal solutions that meet local regulations and requirements while delivering resiliency, quality, and cost savings.

Let us be your partner in making every drop count. Contact us today to discuss your project needs.

Loprest designs and manufactures granular activated carbon (GAC) treatment systems for taste and odor applications, chlorine removal, PFC’s, 1 2 3 TCP, PCE/TCE, 1 4 dioxane, and many other contaminants. Loprest has a long, successful history in the selection and application of the proper carbon media for the application.

LATEST INSIGHTS ON DRINKING WATER

DRINKING WATER VIDEOS

The YSI Pro2030 DO/conductivity water quality meter is ideal for any field application. The instrument is rugged and extremely simple to use.

The Western Governors' Drought Forum webinar “Once Marginal, Now Crucial: The Growing Demand for Re-used, Produced, and Brackish Water” explores the technological and regulatory obstacles to utilizing re-used, produced, and brackish water.

KC Water is strategically and systematically replacing old water mains. Those in the most need get replaced first.

The recoating of a potable water tank in Lancaster, PA, included an already tight timeframe and several challenges that cause delays.

In this episode of The Water Online Show: On Location, our guest is Mike Blackburn from Hach. Mike dives into the benefits of panel-mounted solutions for water quality monitoring.

ABOUT DRINKING WATER

In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA)

Drinking water considerations can be divided into three core areas of concern:

  1. Source water for a community’s drinking water supply
  2. Drinking water treatment of source water
  3. Distribution of treated drinking water to consumers

Drinking Water Sources

Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater. 

Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.

Drinking Water Treatment

Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.

There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.

The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.

The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.

During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.

Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.

Drinking Water Distribution

Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.

A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.

Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.