DRINKING WATER
Rural North Texas Community Cuts Non-Revenue Water By 42% With Pipeline Leak Detection Technology
Discover how a city solved its non-revenue water challenge by rapidly pinpointing three hard-to-find leaks in 13 miles of aging pipeline using a free-swimming acoustic tool.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Water Control Gates Remain In Place At W.B. Casey Water Reclamation Facility Even After Expected Replacement
When a water resource recovery facility started seeing hydrogen sulfide levels of more than 500 parts per million, its force main began to deteriorate. The facility expected it would have to replace the gates that were original to the facility, considering the environment around them was destroyed, but upon further inspection it was found that the gates had suffered no damages.
-
Winter Is Coming. Are Your Water Tanks Ready?
When winter is coming, water utilities gear up to battle the cold and its impact on their distribution systems. What happens to water tanks during the winter and how can you protect your tanks?
-
5+1/2 Keys To Ozone Disinfection Success
Ozone disinfection of water has been a common practice for nearly 100 years.
-
Coastside County Water District, California Drives System Reliability And Sustainability With Microclor® On‐Site Hypochlorite Generation, Encore® Metering Pumps And PolyBlend® Polymer Activation
Located in northern California, the Coastside County Water District (CCWD) provides treated water to the scenic town of Half Moon Bay and several unincorporated communities in the area. The system is served by two treatment plants, the Nunes Water Treatment Plant (4.5 MGD) and Denniston Creek Water Treatment Plant (1.0 MGD) and water is distributed through about 100 miles of transmission and distribution pipe.
-
Global Omnium: Transforming From Conventional To Smart Water
Lessons learned from building one of the largest smart meter networks in Europe.
-
Combating Cyber Threats: How To Secure Water Utility Systems
As technology gets more sophisticated, so have hackers and cyberattacks. How can utilities protect themselves and their customers?
-
Winterization Of Ozone And UV Systems: A Guide For Operators And Maintenance Staff
A proper winterization plan for treatment plants is essential to maintaining the operational safety of the effluent quality process and preventing disruption to customers.
-
How To Get Acoustic Leak Detection For The Price Of An AMI Meter
Whatever number a utility estimates as its non-revenue-water (NRW) loss rate — 20 percent, 30 percent, or more — the willingness to address it is often inversely proportional to the cost of doing so. Now, leak detection options that include acoustic monitoring as a built-in feature of residential water meter replacement are cutting the costs and complexity of identifying NRW losses and recapturing lost revenues.
-
Iron, Manganese, And Arsenic Pilot Study In The Golden State (Loprest)
This report summarizes results and conclusions of a groundwater treatment pilot test program. This pilot test program was undertaken to demonstrate the effectiveness of water treatment products that employ oxidation and filtration to remove iron, manganese and arsenic to levels well below MCL’s. Operating data collected during the study will be used to confirm the design of fullscale facilities.
-
Flow Measurement Of Reservoir Water With A Clamp-On Meter
Discover why clamp-on flow measurement provides a much more reliable and accurate reading compared to other methods.
DRINKING WATER APPLICATION NOTES
-
Determination Of EN15662:2008 - Determination Of Pesticide Residue In Food Of Plant Origin, By An Automated QuEChERS Solution9/24/2014
Pesticide residue laboratories are required to undertake analyses of an ever increasing number of samples. The analyses typically involve use of multi-residue methods (both GC-MS and LC-MS) to test for over 500 pesticide residues.
-
Oxidation Reduction Potential10/29/2021
What is ORP? Oxidation Reduction Potential or Redox is the activity or strength of oxidizers and reducers in relation to their concentration. Oxidizers accept electrons, reducers lose electrons. Examples of oxidizers are: chlorine, hydrogen peroxide, bromine, ozone, and chlorine dioxide. Examples of reducers are sodium sulfite, sodium bisulfate and hydrogen sulfide. Like acidity and alkalinity, the increase of one is at the expense of the other.
-
Organics Aren't Invisible: A Guide for Simple Online Monitoring5/13/2019
Control of dissolved organics has been one of the highest priority concerns for most water treatment plants for over 20 years. Organics monitoring is an even more critical issue today in the face of more stringent regulations and concerns around trace organics, emerging contaminants, and even counter-terrorism or water security. Despite the critical need, many plants still rely primarily on turbidity for monitoring and process control.
-
Bottled Water Industry: Liquid Analytical Solutions11/10/2013
Americans consume more than 9.1 billion gallons of bottled water annually - an average of twenty nine gallons per person every year.
-
Pile Cloth Media Filtration Removes 97% Of Microplastics From Wastewater12/6/2023
Learn about filtering microplastics from industrial wastewater prior to discharge, and how this is one way to effectively reduce the volume of this waste material from entering our surface water.
-
How To Install A Submersible Pump In Discharge Tubes11/28/2012
In the fields of water and waste water technology, submersible pumps represent a viable economic and technical alternative to conventional, dry-installed pumps. In particular, they offer a number of handling advantages during maintenance and installation work.
-
Groundwater Remediation12/1/2020
Good quality groundwater is an important natural resource. It provides drinking water for the public as well as process water for industrial applications. Groundwater can become contaminated through a number of ways including improper handling of process chemicals or disposal of wastes.
-
Real-Time Conductivity Monitoring Estimates Chloride Levels In Minnesota Watershed By Using The Aqua TROLL 20011/18/2011Monitoring deicing chemical levels can help researchers, city governments, and regulatory agencies understand runoff impacts on surface water, groundwater, and surrounding environments.
-
Scrubber Application1/27/2022
This customer supplies district heating and electricity for the region of Sønderborg. For one of their waste applications a MAG meter failed within 6 months, and was successfully replaced with a Panametrics Aquatrans AT600.
-
Remote Monitoring And Maintenance Through Digitalization3/17/2020
Siemens offers to our customers the ability to make both process measurements, and to remotely monitor the activity and health of instrumentation, whether you have a SCADA, PLC or DCS system, or not. By utilizing Siemens’ ability to offer unparalleled flow, level, pressure, temperature, and weight measurement we can provide a broad range of process measurements and offer unequaled monitoring of the health and performance of those products.
LATEST INSIGHTS ON DRINKING WATER
-
This Q&A follows the Webinar: Beaverton's New AMI Solution Checks Every Box: Operations, Billing, Service, & Savings hosted by Water Online on October 21, 2025. The webinar featured the leadership team from Beaverton Water Division as they discussed lessons learned across operations, billing, and customer service, offering a 360-degree perspective on implementing and managing an AMI system.
-
Amid the AI-fueled gold rush, more leaders are beginning to pay attention to the short- and long-term natural resource concerns, especially around all the water needed to keep data centers running.
-
Water pricing often fails to reflect scarcity, quality, or long-term risk, forcing companies to act internally. But this action is not being done in a vacuum. The ripple effect of internal water pricing is bound to impact water utilities, and ultimately, ratepayers and consumers.
-
Misinformation and confusion could prevent some utilities from benefitting from the aqueous film-forming foam multidistrict litigation (AFFF MDL) settlements. Here are five common myths about the AFFF MDL PFAS settlements and how public water systems can make the most of this unprecedented funding opportunity.
-
Every year on November 19, Water Mission observes World Toilet Day — a day designated by the United Nations to focus on the importance of safe sanitation for all.
-
Global Water Outcomes expert notes that “water utilities are facing unprecedented challenges and opportunities,” citing the role of digital solutions moving forward.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.