DRINKING WATER
Why Planning Is The Hero Of AMI Deployment
Thorough planning, accurate data, and strong communication are the keys to successful AMI deployments, preventing costly disruptions and ensuring technology delivers long-term operational and customer service value.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
PWSA Reduces Customer Request Fulfillment From 4 Months To 14 Days
Due to recent LCR exceedances, PWSA faced skyrocketing customer requests on top of the order to replace 7% of their roughly 18,000-33,000 lead service lines every year. In addition, their Lead and Copper Compliance (LCR) and Lead Service Line Replacement testing program (LSLR) required immense amounts of manpower. These two events combined to require thousands of point-of-use kits to be collected and tested every year. They looked to 120WA to solve the challenges of siloed data sources, kit delivery and pickup, lab coordination, and distribution of results.
-
Real-Time Digital Analytics Identifies More Than 180 Million Gallons Of Annual CSO Reduction
The City of Richmond turns to Xylem Wastewater Network Optimization to identify critical CSO-reducing projects, putting them on a path to regulatory compliance while avoiding costly and unnecessary infrastructure.
-
Why Material Selection Matters
The Tri-County Water Authority (TCWA) was formed in 1991 as a not-for-profit water utility serving portions of Jackson, Cass and Bates counties, Missouri. When the system was first established, about half of the pipe installed were ductile iron and half were plastic PVC. Today, the authority’s 120 miles of pipe are approximately 75% ductile iron and 25% plastic PVC.
-
Managing Water Loss In Four Easy Steps
A practical approach to detecting leaks and reducing non-revenue water.
Water utilities are charged with an incredibly important task – providing safe and affordable water to communities in the face of aging infrastructure, funding gaps, and changing regulatory requirements. Specifically, when considering water loss control, leakage, and operational inefficiencies, costs may appear to be unaffordable.
-
Legionella: The “Quiet Pandemic"
Over the course of the COVID-19 pandemic, it is likely that many people have forgotten about Legionella, which has been described as a “quiet pandemic” by legislators in the United States. While the focus of many government health authorities has been to react to and reduce the impact of COVID-19, the many stay at home orders issued, and the increase in employees working from home has been ideal for Legionella bacteria present in cooling towers in commercial systems.
-
Direct Burial Meters Offer Significant Savings
Most pipelines are below grade, so vaults have traditionally been installed to provide access to any place where a meter and valve are necessary. Vault pits tend to be large, and the installation is by far the biggest expense of a metering project. The good news is that direct burial metering options can greatly simplify the installation requirements, significantly lowering the costs, while also boosting safety.
-
Ozone Makes A Comeback
Ozone has been a proven effective method of water treatment and disinfection for well over a century.
-
Advanced Diagnostics of Thermal Mass Flow Meters
Many thermal mass flow meters are of the insertion type. As a starting point, proper insertion depth and straight run per the manufacturer’s recommendations should be adhered to.
-
Better Drinking Water Quality Starts Upstream
While every potable water treatment process requires a balance of chemistry and biology to deliver safe, clean drinking water, added concerns from upstream stormwater or agricultural runoff only make the job that much more difficult. How can we do a better job of safeguarding water treatment plant (WTP) operations while protecting the health of water utility customers against threats of upstream nonpoint source (NPS) pollution?
-
What Is Sustainable Flocculation And What Are Sustainable Flocculants?
In most standard drinking water and wastewater treatment systems, there is a flocculation process that is used to reduce the concentrations of solids within the effluent stream. This particular process makes use of substances that aid in the clumping together of suspended particles among other contaminants in a clarifier system.
DRINKING WATER APPLICATION NOTES
-
Pikeville, Kentucky Medical Center Leak Found Despite Ambient Noise6/23/2021
Leaks found in 60 psi high density PE pipe by FELL in less than three hours. Acoustic and CCTV failed to find any leaks after more than a year of investigation. Read the full case study to learn more.
-
Determination Of Polar Pesticide Residues In Food Of Plant Origin, By And Automate QuPPe Solution9/29/2014
The QuEChERS (Quick-Easy-Cheap-Effective-Rugged-Safe) sample extraction method was developed for the determination of pesticide residues in agricultural commodities.
-
The Role Of Zeta Potential In Water Treatment Process Control5/27/2020
Physical processes such as sedimentation, flotation and filtration remain at the heart of most process trains for the treatment of water and wastewater flows.
-
Improved Efficiencies In TOC Wastewater Analysis For Standard Method 5310B And EPA Method 41510/16/2014Total organic carbon (TOC) measurement is of vital importance to the operation of water treatment due to organic compounds comprising a large group of water pollutants. TOC has been around for many years, and although it is a relatively simple analysis in theory, operational efficiency is paramount.
-
What Are You Doing To My Pipe: Can PVC Pipe Be Loaded?4/13/2021
The argument has been used that PVC pipe is delicate and can’t be subjected to any kind of loading. In EBAA's years of testing we have found that is not the case at all. PVC can take an extreme amount of strain.
-
Dosing Of Sodium Hypochlorite Solution For Drinking Water Disinfection9/22/2022
A water purveyor was in urgent need of a chemically resistant flow instrumentation with a long life of service that allowed reliable and long-term stable dosing of the sodium hypochlorite solution.
-
Application Note: Turbidity Monitoring In Drinking Water Treatment Plants8/30/2005
Turbidity, or the relative clarity of a liquid (in this case drinking water), is caused by the presence of microscopic particles such as clay, silt, or other fine undissolved matter
-
Innovative Solutions To Drinking Water Decontamination In Small And Medium Treatment Plants9/21/2017
Air stripping technology effectively removes VOCs, THMs, and CO2 for improved adherence to water quality regulations.
-
Industry-Specific Applications For UV Technology6/17/2024
In Microelectronics, Aquafine UV systems provide a synergistic approach towards the reduction of trace organics and microbial contamination for ultrapure water.
-
Preliminary Assessment Of Water Quality In Riviera Grise Near Port-Au-Prince, Haiti10/17/2012
The Riviera Grise drains water from the Cul-de-Sac watershed, Haiti, which covers most of the rural areas along the flood plains and areas that extend into steep hillsides. It also covers urban areas of Port-Au-Prince, the capital city of Haiti.
LATEST INSIGHTS ON DRINKING WATER
-
Setting Global Standards: Inside North America's Only Full-Scale UV Disinfection Validation Facility
Portland's industry-leading facility reaches 100 reactor validations in 23 years.
-
Given the maturation of sensor technology, the scientific and operational hurdles to portable lead analysis are somewhat surprising — but surmountable.
-
Bathymetric modeling maps underwater terrain. It also helps guide planning, prevent hazards, and build climate-resilient infrastructure.
-
The data center industry stands at a critical juncture. As facilities scale to meet exponential computing demands, water consumption has emerged as a defining operational challenge. Traditional approaches focused on water efficiency are no longer sufficient.
-
When pregnant women drink water that comes from wells downstream of sites contaminated with PFAS, known as “forever chemicals,” the risks to their babies’ health substantially increase, a new study found. These risks include the chance of low birth weight, preterm birth, and infant mortality.
-
Beaverton Water Division’s transition to Kamstrup AMI and acoustic leak detection is modernizing meter reading, reducing infrastructure costs, improving leak identification, and streamlining operations as deployment progresses.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.