DRINKING WATER
Custom Tank Designs That Actively Manage PFAS Mass Transfer Zone (MTZ) — And Why It Matters More Than Ever
As utilities prepare for the pending 4-ppt PFAS drinking water MCL, many are discovering that legacy lead/lag designs—workhorses for decades when treating contaminants in the ppm and ppb range—simply are not optimized for the parts per trillion-level (ppt) precision PFAS demands.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
City Of Austin, Texas Installs A Total of 4,500 Pounds‐Per‐Day Of On‐ Site Hypochlorite Capacity Using the Microclor® OSHG System
With 100 years of service history, Austin Water has seen enormous change in its 540 square miles of service area. Planning for the next 100 years has city and utility planners considering a diversity of sources, system resilience, and sustainability while being mindful of conservation goals. In the city’s newest water treatment plant, WTP4, Austin Water was able to combine those planning elements into a state‐of‐the‐art treatment plant. The plant, which is located on Lake Travis, is capable of treating 50 million gallons a day (MGD) with the ability to expand to 300 MGD.
-
Engineered For Impact: The Carbon That Stands Out In PFAS Treatment
Filtrasorb 400’s agglomerated pore structure and high volumetric capacity deliver unmatched PFAS removal, longer run times, and lower lifecycle costs—outperforming direct-activated carbons in real-world and lab testing.
-
Hendersonville Water Treatment Plant Features Innovative Disinfection System
Hendersonville Utility District (HUD) serves one of the most populous suburbs of Nashville, Tennessee.
-
A Pathway To Keeping Pace With AMI Technology
The rise of advanced metering infrastructure (AMI) has been a substantial benefit to municipalities. AMI goes beyond billing data to provide deep insights into water distribution systems and offers utility managers an important tool in delivering the highest quality drinking water. However, that advancement has also generated a significant obstacle. The good news is that a cost-effective and flexible solution is available.
-
Groundwater vs. Surface Water: A Treatment Comparison
This article will discuss two of the most common drinking water sources and how they affect treatment priorities and configurations.
-
Depths Of Druck's Experience Prevents Leaks For Water Authorities
Druck’s Customer is a manufacturer of data logging equipment, used in the monitoring of water distribution systems. As with many of Druck’s Customers, they install sensors into the component or assembly that they in turn supply to their customer.
-
On The Job In 72 Hours Following Utility's Massive Water Main Break
On the morning of December 12, 2017, about 30 homes in the Shelby Park neighborhood of Lousiville, KY, were without water, and others were experiencing low water pressure after a massive water main break at the intersection of Clay and Oak streets. More than 20 million gallons of water flooded the neighborhood, covering a three-block area.
-
BEACON AMA Managed Solution Helps Provide Great Water and Great Customer Service
Situated along the Arkansas River and Lake Dardanelle in the heart of the Arkansas River Valley, Russellville, Arkansas is known for having plentiful amounts of high quality, fresh water.
-
Thrust Restraint Design Of Vertical Offsets And Tees
There are numerous fitting combinations and configurations that are used in the everyday construction of pressurized water lines. This report describes vertical offsets, tees, and using joint restraint products to simplify their installation. The use of joint restraint products virtually eliminates thrust blocks and tie rods.
-
Ridgway WTP Saves 20-30% With Real UV254 Analyzer
The Ridgway Water Treatment Plant (WTP) in Elk County Pennsylvania uses a Real Tech Real UV254 online analyzer to achieve a 20-30% savings in annual coagulant use in their conventional water treatment process. Beyond operational cost savings, the Real UV254 system helps the WTP consistently produce high quality drinking water for the town’s 1700 customers.
DRINKING WATER APPLICATION NOTES
-
Advances In Paper-Based Devices For Water Quality Analysis2/22/2017
Water quality test strips have been around for decades. They are usually constructed from a porous media, including different types of paper, and undergo a color change when dipped into water containing the analyte of interest. These test strips have seen application in swimming pools, aquariums, hot tubs, remediation sites, and other commercial/environmental areas.
-
Determination Of EN15662:2008 - Determination Of Pesticide Residue In Food Of Plant Origin, By An Automated QuEChERS Solution9/24/2014
Pesticide residue laboratories are required to undertake analyses of an ever increasing number of samples. The analyses typically involve use of multi-residue methods (both GC-MS and LC-MS) to test for over 500 pesticide residues.
-
Flow Monitoring At Sea Water Reverse Osmosis Plant Improves Water Distribution1/6/2025
Read about a desalination plant that was in need of a practical verification methodology for permanent and/or temporary (portable) solutions on large pipes.
-
Veterinary Drug Residue Analysis Using The AutoMate-Q40: An Automated Solution To QuEChERS10/1/2014
QuEChERS is a Quick-Easy-Cheap-Effective-Rugged-Safe extraction method that has been developed for the determination of pesticide residues in agricultural commodities.
-
Determination Of Pesticide Residues In Honey, By An Automated QuEChERS Solution9/17/2014
The QuEChERS (Quick-Easy-Cheap-Effective-Rugged-Safe) sample extraction method was developed for the determination of pesticide residues in agricultural commodities.
-
Application Note: Ozone Measurement In Potable Water3/1/2010
Ozone is a powerful oxidizing agent that can be used to destroy the organic compounds that affect the taste and odor of potable water. Environmental concerns have led to increased use of ozone because, unlike chlorine, it does not form hazardous by-products.
-
Municipal Real-Time Water Quality Monitoring9/24/2020
We arm municipalities with actionable data necessary to make informed decisions about water quality in their communities
-
Bardac® LF 18 — A Novel Cooling Water Algaecide10/23/2020
The active ingredient in Bardac® LF 18 is dioctyl dimethyl ammonium chloride. This product comes in two concentrations: -10WT (10% w/w) and -50WT (50% w/w). Several chemical properties of this product yield key benefits that set it apart from other industrial cooling water products. It is a quaternary ammonium compound (quat). Quats are typically low cost and highly effective biocides for a broad spectrum of organisms.
-
Determination Of Polycyclic Aromatic Hydrocarbons In Seafood4/20/2015
Polycyclic Aromatic Hydrocarbons (PAHs) are a large group of organic compounds found naturally in the environment. PAHs are monitored by the US Environmental Protection Agency due to their carcinogenic characteristics.
-
Bottled Water Industry: Liquid Analytical Solutions11/10/2013
Americans consume more than 9.1 billion gallons of bottled water annually - an average of twenty nine gallons per person every year.
LATEST INSIGHTS ON DRINKING WATER
-
Beaverton Water Division’s transition to Kamstrup AMI and acoustic leak detection is modernizing meter reading, reducing infrastructure costs, improving leak identification, and streamlining operations as deployment progresses.
-
Learn how the Mustang Bayou Service Area (MBSA) Water System Improvements project delivered a fast-tracked, multi-phase response to rapid development and critical capacity challenges in one of the Missouri City’s fastest-growing regions.
-
As water systems grow more complex and climate patterns shift, Legionella is emerging as one of the most persistent and underestimated risks in the built environment. The threat to public health from Legionnaires' disease will likely further escalate unless decisive action is taken.
-
The city of Jackson faced a water crisis that went beyond the tap. What began as an ambitious plan to modernize its water metering infrastructure in 2014 became a logistical and financial nightmare, costing the city millions in lost revenue and declining public trust. Metering as a Service (MaaS) offered the city an alternative option.
-
There has been an abundance of funding available to address the estimated 9.2 million lead service lines currently deliver drinking water to homes, businesses, schools, and unsuspecting citizens throughout the United States. So it is disheartening to realize that millions of lead water lines are still delivering water to citizens.
-
This Q&A follows the Webinar: Beaverton's New AMI Solution Checks Every Box: Operations, Billing, Service, & Savings hosted by Water Online on October 21, 2025. The webinar featured the leadership team from Beaverton Water Division as they discussed lessons learned across operations, billing, and customer service, offering a 360-degree perspective on implementing and managing an AMI system.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.