DRINKING WATER
Why Planning Is The Hero Of AMI Deployment
Thorough planning, accurate data, and strong communication are the keys to successful AMI deployments, preventing costly disruptions and ensuring technology delivers long-term operational and customer service value.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Thrust Restraint Design Equations And Soil Parameters For Ductile Iron And PVC Pipe
These equations and soil parameters are an effort to provide the piping system designer with conservative techniques and parameters for the design of underground restrained joint piping systems.
-
Brainstorming New Ideas For Improved Stormwater Infrastructure
Planning how to address environment-impacting, water-infrastructure challenges — reducing stormwater runoff pollution, reducing sewer overflows, and protecting rivers and streams that serve as drinking water supplies for downstream towns — can be an intimidating task. A recent report from the Environment America Research & Policy Center cites many examples that can serve as beacons for municipalities large and small.
-
It Takes Two To Tango: Effective Water Loss Management
Reducing non-revenue water (NRW) and managing water loss is a critical challenge in water utilities. However, it’s important to understand that there’s no magic solution to this problem.
-
CHA Consulting Is Helping Florida Utilities Meet Ambitious Reclaimed Water Effluent Regulations
Discover how CHA Consulting has been working to help utilities across the sunshine state find the right balance and stay ahead of statewide deadlines for compliance.
-
Multi-Phase Flow Meter (MPFM) Analysis
Multi-phase flow meters are important for well surveillance and production allocation where there is multiple ownership. It is therefore important to track the accuracy of multi-phase flow meters, identify issues and ensure rapid corrective action. Read more to learn how the Seeq tools were used to analyze and monitor performance.
-
A Golden Spike In Revenue, Efficiency, And Customer Service With The R900® System
In 2008, the public utility manager in Ogden City, Utah sent out a request for proposal on a system-wide changeout of its meters, absolute encoders, and radio frequency meter interface units (RF MIUs), with a goal of eliminating estimating and replacing all their meters with AMR technology to read year-round. Read the full case study to learn more.
-
Disinfection Technologies: How Do You Make the Right Choice?
The right disinfection technology is crucial for meeting regulatory standards and ensuring safety. This article compares the pros and cons of chlorine, peracetic acid (PAA), ozone, and UV disinfection.
-
Why Static Metrology Is Important In A Modern Era
As sustainability, climate change resilience, and the overall increasing cost of water increasing come into focus, the needs of water utilities and their customers have shifted.
-
12 Installation Tips For Challenging Pipeline Repairs
Having to repair old, worn, broken, or leaking pipes is bad enough. Having to revisit the repair location a second time to refurbish the original fix is doubly frustrating. Here are some guidelines for getting the best results from pipeline repair efforts and enhancing the durability of the repair effort to match the anticipated service life of the pipeline itself.
-
Is Transitioning From AMR To AMI Worth The Effort?
For the City of Fairborn, Ohio, switching from manual meter reading to automated meter reading (AMR) and eventually to advanced metering infrastructure (AMI) has made a small operations staff more productive, provided more timely information for the city’s water treatment plant and distribution system, and tremendously improved customer service. Learn about the benefits captured and lessons learned along the way.
DRINKING WATER APPLICATION NOTES
-
A New Way Of Designing With Reverse Osmosis Membranes7/23/2015
Process design in water treatment is historically confined to proprietary or user-defined spreadsheets on a unit operation basis, with users manually adding results from each unit process upstream into the next operation.
-
Performance Test Services For UV Advanced Oxidation Systems12/1/2025
UV AOP performance verification requires a robust test matrix covering design, operating, and control conditions. This process includes on-site execution, sample analysis, and troubleshooting to achieve successful regulatory approval.
-
The Basics: Testing RO Quality4/28/2014
Osmosis is the phenomenon of lower dissolved solids in water passing through a semi-permeable membrane into higher dissolved solids water until a near equilibrium is reached.
-
Bottled Water Industry: Liquid Analytical Solutions11/10/2013
Americans consume more than 9.1 billion gallons of bottled water annually - an average of twenty nine gallons per person every year.
-
The Active Control Program For Advanced UV Oxidation12/1/2025
This application note will explore how active control programs lower operational costs of compliant contaminant removal.
-
Recording & Control: In Coagulant Dosage Applications For Potable Water Treatment7/1/2019
Potable water or drinking water as it is also known, is water that is safe to drink or to be used in food preparation. Typically, in developed countries, tap water meets the required drinking water standards, although only a small proportion is actually drank or used in food preparation.
-
Application Note: Water Flows From The Golden Hills Of California1/20/2010Each morning John Johnson drives the few miles from his smalltown home in northern California to the Center at Pardee Reservoir. Nestled among the foothills of the Sierra Nevada mountain range, the reservoir is a long 100 miles away from San Francisco Bay. By YSI
-
Take Control Of Your Water Distribution Network With Digitalization And Remote Monitoring5/19/2022
Any process plant constantly generates a high volume of status data. Today, this data can be extracted from the plant, stored, analyzed, and prepared to meet operator needs and lower marginal costs.
-
Application Note: Turbidity Monitoring In Drinking Water Treatment Plants8/30/2005
Turbidity, or the relative clarity of a liquid (in this case drinking water), is caused by the presence of microscopic particles such as clay, silt, or other fine undissolved matter
-
LC-MS/MS Analysis Of PFAS Extractables In Polyethersulfone Syringe Filters Using EPA 537.15/18/2022
A key consideration for any PFAS method is to avoid contamination that can impact the accuracy of data, including those coming from sample preparation techniques such as filtration.
LATEST INSIGHTS ON DRINKING WATER
-
The data center industry stands at a critical juncture. As facilities scale to meet exponential computing demands, water consumption has emerged as a defining operational challenge. Traditional approaches focused on water efficiency are no longer sufficient.
-
When pregnant women drink water that comes from wells downstream of sites contaminated with PFAS, known as “forever chemicals,” the risks to their babies’ health substantially increase, a new study found. These risks include the chance of low birth weight, preterm birth, and infant mortality.
-
Beaverton Water Division’s transition to Kamstrup AMI and acoustic leak detection is modernizing meter reading, reducing infrastructure costs, improving leak identification, and streamlining operations as deployment progresses.
-
Learn how the Mustang Bayou Service Area (MBSA) Water System Improvements project delivered a fast-tracked, multi-phase response to rapid development and critical capacity challenges in one of the Missouri City’s fastest-growing regions.
-
As water systems grow more complex and climate patterns shift, Legionella is emerging as one of the most persistent and underestimated risks in the built environment. The threat to public health from Legionnaires' disease will likely further escalate unless decisive action is taken.
-
The city of Jackson faced a water crisis that went beyond the tap. What began as an ambitious plan to modernize its water metering infrastructure in 2014 became a logistical and financial nightmare, costing the city millions in lost revenue and declining public trust. Metering as a Service (MaaS) offered the city an alternative option.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.