DRINKING WATER
Using Biological Competition To Suppress Algae Growth
Effective algae control shifts the focus from removal to nutrient management. By leveraging bioaugmentation to outcompete algae for nitrogen and phosphorus, facilities can stabilize pH levels and dissolved oxygen, ensuring long-term pond clarity and consistent wastewater treatment performance.
DRINKING WATER CASE STUDIES AND WHITE PAPERS
-
Accurate Metering For Every Water Consumer's Habits
Utilities looking for greater billing efficiency and control over every drop of water consumed by their customers face a constant battle with non-revenue water loss, which can be compounded by different metering technologies and consumer behaviors. Using accurate, always-on, continuous-sampling meters to take full advantage of automated smart utility networks is a better way to improve decision-making and achieve accountability goals across any circumstances.
-
Drinking Water Disinfection In A New Hampshire Town
The town of Hillsborough, NH chose Atlantium's HOD UV system to disinfect their drinking water due to its low disinfection by-products and reliable virus inactivation. Atlantium's UV technology is validated and offers stable and efficient water treatment solutions.
-
Aquatic Invasive Species Control At Hoover Dam
In this case study, learn why Hoover Dam installed Atlantium's HOD UV treatment system to protect its cooling water systems from Quagga mussels.
-
Utility Removes Burdensome Bulk Sodium Hypochlorite From Operations
Historically, Lyon County Utilities, Nevada, applied 12.5% bulk sodium hypochlorite for disinfection at each of their well sites. Always looking to improve system efficiency, Lyon County staff reexamined on‐site hypochlorite generation to determine if the use of the 0.8% sodium hypochlorite solution could mitigate the challenges associated with dosing high strength sodium hypochlorite.
-
How To Use Water Quality Monitoring To Increase Operational Efficiency
When properly utilized, water quality monitoring can reduce costs, aid in resource allocation, and ensure consistent regulatory compliance in a number of ways.
-
Oxidation And AOP: The Last Lines Of Defense Against Harmful Algal Blooms
Secondary metabolites of algae — including algal toxins and taste and odor compounds triggered by a harmful algal bloom — can find their way into source water, creating the risk that they will ultimately reach the water treatment plant to cause water-quality problems. Here is a checklist of considerations for mitigating those effects through cost-effective oxidation, or combined oxidization processes, across a variety of source water conditions.
-
Purifying Water From The Ground Up
For some water providers, carefree days of producing pure, fresh water from groundwater sources are long gone. Years of evolving chemical complexity, industrial operations, and short-sighted disposal methods have taken a toll on groundwater sources. Fortunately, new technologies are helping water providers make the best of a challenging situation across a wide range of contaminants.
-
From Challenge & Prize Competition To Test Prototype: The Nitrogen Sensor That Could Change Residential Onsite Wastewater Treatment
More than one in five households in the United States depend on septic or onsite systems to treat their wastewater. These systems provide critical water quality infrastructure, but they usually are not designed to remove nitrogen to the point that sufficiently protects coastal marine ecosystems. As a result, septic systems are known to contribute to eutrophication (excess nutrients), hypoxia (low levels of oxygen), and harmful algal blooms in marine and estuarine waters.
-
Grundfos Solutions For Industrial Water Reuse
Water is such a fundamental necessity for life that it is often taken for granted. In modern industrial societies, the water from every tap is expected to be so pure that we can drink it without a second thought. However, the reality is much more complicated. Mankind is becoming increasingly aware that fresh water is a rarity, and the process of water treatment is vitally importance to us all. This white paper is intended to introduce the reader to the many elements that constitute the water reuse process.
-
Camp Steiner, Utah Case Study
Located at 10,400 feet in the Uintah Mountains of Utah, Camp Steiner is the highest Boy Scout camp in the United States.
DRINKING WATER APPLICATION NOTES
-
TOC Monitoring In Process Return Condensate4/23/2021
Industrial power plants or co-generation power plants utilize steam for industrial purposes other than power production.
-
Best Practices In Moist And Wet Gas Flow12/20/2021
The Wet Gas MASSter sensor is for use in applications that have a high level of moisture or condensation present in the gas flow stream that cannot otherwise be removed.
-
Remote Monitoring And Maintenance Through Digitalization3/17/2020
Siemens offers to our customers the ability to make both process measurements, and to remotely monitor the activity and health of instrumentation, whether you have a SCADA, PLC or DCS system, or not. By utilizing Siemens’ ability to offer unparalleled flow, level, pressure, temperature, and weight measurement we can provide a broad range of process measurements and offer unequaled monitoring of the health and performance of those products.
-
Application Bulletin: Reverse Osmosis3/19/2008
Osmosis is the phenomenon of lower dissolved solids in water passing through a semi-permeable membrane into higher dissolved solids water until a near equilibrium is reached
-
Protection Of Membrane Systems Utilized For Municipal Water12/1/2020
As water scarcity issues around the world become more acute, more municipalities are having to turn to alternative water sources for potable water supplies. Also, many municipalities in coastal areas are seeing the quality of their water sources degrade as sea water intrusion occurs.
-
Bridge Crossings And The Proper Use Of EX-TEND®, FLEX-TEND®, And Force Balanced FLEX-TEND Products11/1/2020
Of particular interest when it comes to bridges is the locating of pressurized water lines on and under bridge structures. Pressurized pipelines can present a number of unique challenges to the design engineer and utility owner.
-
Flow Monitoring At Sea Water Reverse Osmosis Plant Improves Water Distribution1/6/2025
Read about a desalination plant that was in need of a practical verification methodology for permanent and/or temporary (portable) solutions on large pipes.
-
Solution For Algae Blooms12/17/2015
Harmsco® Filtration Products is pleased to offer a solution to the ever increasing blue-algae blooms in water sources. A multi-barrier approach is necessary to physically remove intact (algae and cyanobacteria) before they rupture in the treatment process and then remove extracellular cyanobacteria through adsorption.
-
How Activated Carbon Works To Purify Air And Water10/31/2019
The first step is to define the performance limiting factors in the application. For this application, most of the adsorber is used for MTBE adsorption in the ppb concentration range. Adsorption of BTEX, TBA, or humic acids or other total organic carbon (TOC) components are removed by the front end of the column.
-
Hydrogen Sulfide Removal From Water Using AquaSorb® CX-MCA2/19/2014
The “rotten egg” odor in some water supplies is caused by sulfide in water. Sulfide can be treated using oxidation techniques, the goal being to convert the sulfide to high oxidation state species such as sulfate to eliminate the taste and odor concerns. Traditional oxidation techniques such as ozone and chlorine can be used, but can be expensive due to the equipment required to add and monitor the oxidant, and can lead to by-products such as trihalomethanes (THMs), which are regulated in drinking water supplies.
LATEST INSIGHTS ON DRINKING WATER
-
When people think about agricultural pollution, they often picture what is easy to see: fertilizer spreaders crossing fields or muddy runoff after a heavy storm. However, a much more significant threat is quietly and invisibly building in the ground.
-
As water systems become more circular and complex, understanding and managing the subsurface — the hidden half of the water cycle — is becoming a critical enabler of resilience. This article explores the key trends shaping this new reality, from tackling “forever chemicals” to the water strategies redefining heavy industry.
-
The White House has finalized plans to roll back rules under the National Environmental Policy Act (NEPA), narrowing its focus and limiting what the current administration claims are needless delays for federal approval of water, energy, and other infrastructure plans. For water and wastewater utilities, the changes could speed up permitting for critical projects, although experts warn the tradeoffs could do more harm than good.
-
Setting Global Standards: Inside North America's Only Full-Scale UV Disinfection Validation FacilityPortland's industry-leading facility reaches 100 reactor validations in 23 years.
-
Given the maturation of sensor technology, the scientific and operational hurdles to portable lead analysis are somewhat surprising — but surmountable.
-
Bathymetric modeling maps underwater terrain. It also helps guide planning, prevent hazards, and build climate-resilient infrastructure.
ABOUT DRINKING WATER
In most developed countries, drinking water is regulated to ensure that it meets drinking water quality standards. In the U.S., the Environmental Protection Agency (EPA) administers these standards under the Safe Drinking Water Act (SDWA).
Drinking water considerations can be divided into three core areas of concern:
- Source water for a community’s drinking water supply
- Drinking water treatment of source water
- Distribution of treated drinking water to consumers
Drinking Water Sources
Source water access is imperative to human survival. Sources may include groundwater from aquifers, surface water from rivers and streams and seawater through a desalination process. Direct or indirect water reuse is also growing in popularity in communities with limited access to sources of traditional surface or groundwater.
Source water scarcity is a growing concern as populations grow and move to warmer, less aqueous climates; climatic changes take place and industrial and agricultural processes compete with the public’s need for water. The scarcity of water supply and water conservation are major focuses of the American Water Works Association.
Drinking Water Treatment
Drinking Water Treatment involves the removal of pathogens and other contaminants from source water in order to make it safe for humans to consume. Treatment of public drinking water is mandated by the Environmental Protection Agency (EPA) in the U.S. Common examples of contaminants that need to be treated and removed from water before it is considered potable are microorganisms, disinfectants, disinfection byproducts, inorganic chemicals, organic chemicals and radionuclides.
There are a variety of technologies and processes that can be used for contaminant removal and the removal of pathogens to decontaminate or treat water in a drinking water treatment plant before the clean water is pumped into the water distribution system for consumption.
The first stage in treating drinking water is often called pretreatment and involves screens to remove large debris and objects from the water supply. Aeration can also be used in the pretreatment phase. By mixing air and water, unwanted gases and minerals are removed and the water improves in color, taste and odor.
The second stage in the drinking water treatment process involves coagulation and flocculation. A coagulating agent is added to the water which causes suspended particles to stick together into clumps of material called floc. In sedimentation basins, the heavier floc separates from the water supply and sinks to form sludge, allowing the less turbid water to continue through the process.
During the filtration stage, smaller particles not removed by flocculation are removed from the treated water by running the water through a series of filters. Filter media can include sand, granulated carbon or manufactured membranes. Filtration using reverse osmosis membranes is a critical component of removing salt particles where desalination is being used to treat brackish water or seawater into drinking water.
Following filtration, the water is disinfected to kill or disable any microbes or viruses that could make the consumer sick. The most traditional disinfection method for treating drinking water uses chlorine or chloramines. However, new drinking water disinfection methods are constantly coming to market. Two disinfection methods that have been gaining traction use ozone and ultra-violet (UV) light to disinfect the water supply.
Drinking Water Distribution
Drinking water distribution involves the management of flow of the treated water to the consumer. By some estimates, up to 30% of treated water fails to reach the consumer. This water, often called non-revenue water, escapes from the distribution system through leaks in pipelines and joints, and in extreme cases through water main breaks.
A public water authority manages drinking water distribution through a network of pipes, pumps and valves and monitors that flow using flow, level and pressure measurement sensors and equipment.
Water meters and metering systems such as automatic meter reading (AMR) and advanced metering infrastructure (AMI) allows a water utility to assess a consumer’s water use and charge them for the correct amount of water they have consumed.