Article | January 22, 2014

Has The Cleantech Crash Spurred Need For BlueTech Innovation?

PaulOCallaghan

By Paul O'Callaghan, CEO of O2 Environmental and BlueTech Research.

A recent CBS 60 Minutes documentary, The Cleantech Crash, featured an apocryphal tale of wasted government funding, failed companies and a recurring message that there are not many safe places left to invest.

The vision for a green revolution has not materialized, and this is primarily a result of two things: shale gas and the global economic crisis.

Shale gas, and unconventional fossil fuels in general, have pushed the timeline for a cleantech transition towards low-carbon energy systems out by at least 50 years. As a result, energy security has ceased to be a political driver in North America.

Indeed, the global economic crisis has impacted projects in many industry sectors. The downturn created lower oil prices and sidelined the economic viability of renewables, which must compete with and are benchmarked against an incumbent energy system with an ever-changing and volatile canvass.

The economic viability of renewables are linked to oil prices. In fact one of the single biggest challenges to building a stable economic platform for renewable energy, is the volatility of fossil fuel energy, where the goal-posts keep moving.

Appetite to address climate change is gone, but climate change is not

Whatever appetite there may have been in the good times to address climate change and spur a move towards a low carbon economy with feed-in tariffs and production tax credits is now gone. Both of these support mechanisms are under pressure and the very notion of a carbon tax seems like a distant out of context idea from the pages of a history book.

There is no money, political will, or need (in terms of primary energy needs) to fund the transition to a low carbon green energy economy.

While climate change may have disappeared from the political agenda and the media, it continues to do its work quietly, and occasionally loudly, as we experience extreme weather events.

The ascendancy of unconventional fossil fuels and resulting demise of cleantech renewable energy are working in tandem to compound water pressures

Ironically, the ascendancy of unconventional fossil fuels and the resulting demise of cleantech renewable energy create more pressure on water resources and hence more water technology opportunity than would have been the case if we had transitioned to a low carbon economy.

From an operational perspective, solar PV and wind energy use essentially no freshwater and they help mitigate climate change.

On the other hand, both conventional and unconventional fuel energy sources require water in the extraction process and create produced water, which has to be treated.

Currently, we meet almost 80% of our primary energy needs through fossil fuels and that looks set to continue for the coming decades. It’s been reported that the world average freshwater intensity for conventional on-shore oil extraction is 21m3/TJ, while shale gas freshwater intensity ranges from 3-17m3/TJ.

The subsequent carbon emissions from combustion accelerates climate change, which again, puts more pressure on water resources and leads to intense rainfall events which have to be managed. 

The cleantech energy revolution was never going to solve our water issues, but its absence exacerbates them. 

Water is now more than ever inextricably linked to the future of how we provide energy for the planet and feed the people on it. 

Cleantech is alive and well in areas of energy efficiency, resource recovery and water re-use

The cleantech umbrella includes more than renewable energy, and is alive and well when it comes to areas such as energy efficiency and resource recovery.

There is still a compelling business case and opportunities in saving energy and recovering resources and in general doing more with less. There are opportunities to convert waste and wastewater to energy and to recover nutrients and other valuable materials.

Based on recent analysis, we estimate there is 49 million MW hours of energy potential present in municipal wastewater each year in the USA and 1.1 million tonnes of phosphorous entering municipal wastewater plants in Europe, equivalent to 34% of total EU phosphorous imports each year.

All of this creates for opportunities for value generating innovation and re-evaluating systems efficiencies to create cleantech opportunities.

This is reflected in the fact that in 2013 27% of the water investments tracked through the BlueTech Innovation Tracker mapped to energy and resource recovery. When we look at highly disruptive technologies by theme, again there is a concentration and clustering around energy efficiency and resource recovery, with 29% of Disrupt-o-Meter™ highly disruptive companies in the energy and resource recovery area, 13% in low energy desalination.

All of these have a compelling value propositions in their own right, as does water re-use. 

Interesting times ahead for water

There is a Chinese saying – may you live in interesting times – which is regarded as both a blessing and a curse. Whether we like it or not, we are living through such times, and I believe the changes we will see in the water system in the next two decades will represent a very unique period in our history in terms of how we manage water.

About The Author
"Speaking Up About Water" Guest Blogger, Paul O’Callaghan is the founding CEO of O2 Environmental, a leading global consultancy providing Water Technology Market Expertise to support the commercialization of innovative water technologies. He is also CEO of BlueTech Research, a subsidiary company of O2 Environmental that provides clients with expert insight and analysis on industry drivers and trends, helping them to effectively navigate their way through a changing and evolving water technology market and make informed decisions.

Newsletter Signup
Newsletter Signup