Article | March 26, 2013

Evaluating Different Blower Technologies On A Wire-To-Air Basis

Source: Atlas Copco Airpower Compressor Technique

By Andrew Balberg

In the absence of official third party specifications on energy efficiency, it is difficult to evaluate and compare blower technologies fairly and effectively. The lack of readily available evaluation tools leads to misinformation and unfair comparisons between technologies. Further, the performance verification process is difficult to prove.

Blower manufacturers and their related industries are researching ways to develop fair evaluation criteria and specifications that can be used to determine which blower technology offers the best energy efficiency and performance for a particular application. The evaluation would measure the total energy consumption used by the entire blower system in real world conditions, while taking into account all potential energy losses.

Five basic blower technologies serve the water and wastewater markets: Positive Displacement Lobe Type, High Speed Screw, Multistage Centrifugal, Integrally Geared Single Stage and Gearless Single Stage “Turbo” Technologies that incorporate air or magnetic bearings. Each have all the same basic components, a compressor, motor, starter and inlet filter, and some technologies also have cooling systems, an oil pump, gears, belts, couplings and control systems. Whether the components are shipped separately and assembled on location or pre-assembled with a controller, variable frequency drive and sound enclosure, the evaluation should include all relevant pieces that consume or affect performance.

access the Article!

Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of Water Online? Subscribe today.

Subscribe to Water Online X
  • The value '20' is not valid for NewsletterUserId.

Please enter your email address and create a password to access the full content, Or log in to your account to continue.

or

Subscribe to Water Online
  • The value '20' is not valid for NewsletterUserId.